期刊文献+

一种最大似然调制识别的快速算法 被引量:7

Fast algorithm for maximum likelihood modulation classification
在线阅读 下载PDF
导出
摘要 针对最大似然调制识别算法计算复杂度高的问题,提出了一种可用于实时软件接收机中的离散最大似然算法。通过预存离散似然函数值而后直接查表调用的方式解决耗时的似然函数计算问题,并且算法对载波频率偏差和相位偏移具有鲁棒性。仿真结果表明,该算法与最优最大似然调制识别算法相比,能有效地简化运算复杂度而性能损失较小。 Aiming at the high computational complexity of the maximum likelihood modulation classification method, a discrete maximum likelihood algorithm which can be used in real-time software-defined receivers is proposed. By use of the pre-stored discrete likelihood function value, one can directly look-up a table and pick up the results to eliminate the time-consuming computation of the likelihood function. And this algorithm is robustness to carrier frequency offset and phase offset. Simulation results show that the algorithm can efficiently reduce the computation complexity at a very little sacrifice of performance compared with the optimum maximum likelihood modulation classification method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第3期615-618,共4页 Systems Engineering and Electronics
关键词 调制识别 离散最大似然 预存查表 实时性 modulation classification discrete maximum likelihood pre-stored and look-up table real-time
  • 相关文献

参考文献16

  • 1Dobre O A, Abdi A, Bar-Ness Y, et al. Survey of automatic modulation classification techniques: classical approaches and new trends[J]. IETCommunications, 2007, 1(2):137-156.
  • 2Xu J L, Su W, Zhou M C. Likelihood-ratio approaches to auto- matic modulation classification[J]. IEEE Trans. on System, Man and Cybernetics, 2011, 41(4): 455-469.
  • 3Hameed F, Dohre O A, Popescu D. On the likelihood-based approach to modulation classification[J]. IEEE Trans. on Wire less Communications, 2009, 8(12) :5884.
  • 4Xu J I., Su W, Zhou M C. Distributed classification with multiple sensors[J]. IEEE Sensors 2010, 10(11) :1779 - 1785.
  • 5Xu J L, Zhou M C, Su W. Discrete likelihood ratio test ligent signal recognition in software defined radio[J]. and Optical Communications Conference, 2010 : 1 - 6.
  • 6Journal, Derakhtian M, Tadaion A A, Gazor S. Modulation classification of linearly modulated signals in slow flat fading channels E Jl. IET Signal Processing, 2011, 5(5) :443 - 450.
  • 7柳征,王明阳,姜文利,周一宇.一种新的贝叶斯调制分类算法[J].电子与信息学报,2006,28(7):1233-1237. 被引量:4
  • 8Dobre O A, Hameed F. Likelihood based algorithms for linear digital modulation classification in fading channels [C]//Proc. of the Canadian Conference on Electrical and Computer Engi- neering, 2006:1347 - 1350.
  • 9Shi Q H, Karasawa Y. On signal phase based modulation classi fication[C]//Proc, of the IEEE International Conference on Communications, 2011,1 - 5.
  • 10Hamkins J. Modulation classification of MPSK for space appli cation[C]//Proc, of the Global Telecommunications Confer- ence, 2006:1 - 5.

二级参考文献11

  • 1Wei W, Mendel J M. Maximum-likelihood classification for digital amplitude-phase modulation. IEEE Trans. on Comm., 2000,48(2): 189- 193.
  • 2Polydoros A, Kim K. On the detection and classification of quadrature digital modulations in broad-band noise. IEEE Trans.on Comm., 1990, 38(8): 1199 - 1211.
  • 3Huang C Y, Polydoros A. Likelihood methods for MPSK modulation classification. IEEE Trans. on Comm., 1995,43(2/3/4): 1493- 1504.
  • 4Azzouz E E, Nandi A K. Automatic identification of digital modulation types. Signal Processing, 1995, 47(1 ): 55 - 69.
  • 5Swami A, Sadler B M. Hierarchical digital modulation classification using cumulants. IEEE Trans. on Comm., 2000,48(3): 416 - 429.
  • 6Andrieu C, De Freitas N, Doucet A, Jordan M I. An introduction to MCMC for machine learning. Machine Learning, 2003,50(1/2): 5 - 43.
  • 7Chib S, Greenberg E, Understanding the Metropolis-Hastings algorithm. American Statistician, 1995, 49(4): 327 - 335.
  • 8Lesage S, Toumeret J Y, Djuric P M. Classification of digital modulations by MCMC sampling, IEEE ICASSP, Salt Lake City,Utah, May 2001, vol.4:2553 - 2556.
  • 9Sills J A. Maximum-likelihood modulation classification for PSK/QAM, IEEE MILCOM, Atlantic City, N J, Oct.31-Nov.3,1999:217 - 220.
  • 10Chib S, Jeliazkov I. Marginal likelihood from the Metropolis-Hastings output. Journal of the American Statistical Association, 2001, 96(453): 270- 281.

共引文献3

同被引文献47

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部