期刊文献+

三模压缩粒子数态的量子特性 被引量:2

Quantum Properties of Three-Mode Squeezed Number State
原文传递
导出
摘要 将双模压缩算符进行推广,构建了三模压缩算符,并将其作用在三模粒子数态上来构建三模压缩粒子数态。利用数值计算的方法研究了该量子态的量子特性。讨论了压缩参数变化和光子数变化对压缩效应和反聚束效应的影响。计算结果表明:压缩参数在一定值范围内,态呈现出压缩效应,并且随着光子数的增大,压缩效应减弱。另一方面,态中a1模的反聚束效应随着光子数的增大而减弱,而a2和a3模始终呈现出反聚束效应。 In this paper based on generalizing of two-mode squeezed operator, we construct a new three-mode squeezed operator. Further, the three-mode squeezed partical-number state is proposed by the technique of integration with an ordered product of operators. Its squeezing and antibunching effects are analyzed. The results indicate that its squeezing is weakened with the increase of photon number, and the antibunching effect of a1-mode field is also weakened with the increase of photon number; on the other hand, its a2-mode field and a3-mode field both exhibit antibunching effects.
作者 卢道明
出处 《激光与光电子学进展》 CSCD 北大核心 2013年第3期167-173,共7页 Laser & Optoelectronics Progress
基金 福建省自然科学基金(2011J01018)资助课题
关键词 量子光学 三模压缩粒子数态 压缩效应 反聚束效应 quantum optics three-mode squeezed particale-number states squeezing antibunching effect
  • 相关文献

参考文献6

二级参考文献44

共引文献37

同被引文献31

  • 1孟祥国,王继锁,梁宝龙.增光子奇偶相干态的相位特性[J].光学学报,2007,27(4):721-726. 被引量:7
  • 2Bennett C H, Brassard G, Crt6peau C, et al.. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys Rev Left, 1993, 70(13): 1895-1899.
  • 3Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states[J]. Phys Rev Lett, 1992, 69(20): 2881-2884.
  • 4Ekert A K. Quantum cryptography based on Bell's theorem[J]. Phys Rev Lett, 1991, 67(6): 661-663.
  • 5Nielsen M A, Chuang I L. Quantum Computation and Quantum Information[M]. Cambridge: Cambridge University Press, 2000.
  • 6Hagley E, Matre X, Nogues G, et al.. Generation of einstein-podolsky-rosen pairs of atoms[J]. Phys Rev Lett, 1997, 79(1): 1-5.
  • 7Steffen M, Ansmann M, Radoslaw C, et al.. Measurement of the entanglement of two superconducting qubits via state tomography[J]. Science, 2006, 313(5792): 1423-1425.
  • 8Bose S, Fuentes-Guridi I, Knight P L, et al.. Subsystem purity as an enforcer of entanglement[J]. Phys Rev Lett, 2001, 87(5): 050401.
  • 9Raimond J M, Brune M, Haroche S. Colloquium: manipulating quantum entanglement with atoms and photons in a cavity[J]. Rev Mod Phys, 2001,73(3): 565-582.
  • 10Kim M S, Lee J Y, Ahn D, et al.. Entanglement induced by a single-mode heat environment[J]. Phys Rev A, 2002, 65(4): 040101.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部