期刊文献+

改进利用蚁群规则挖掘算法进行遥感影像分类 被引量:9

Remote Sensing Image Classification Based on Improved Ant-miner
在线阅读 下载PDF
导出
摘要 基于ant-miner算法,提出改进蚁群规则挖掘算法。首先,从信息素浓度增加项、信息素挥发系数两方面,改进信息素浓度更新策略;其次,在算法求解中,引入变异算子,有效加快进化过程,缩短计算时间,获得较好的分类规则。以长沙市城区2006年TM影像为试验数据,在分类试验中对算法进行了验证。结果表明,相对于ant-miner和决策树方法而言,改进蚁群规则挖掘算法能挖掘出规则数目更少、形式更简单的分类规则,同时缩短计算时间,从而能够提高分类精度和效率。 A new ant colony algorithm based on conventional ant-miner algorithm is proposed.Firstly,the conventional ant-miner algorithm is modified by using new pheromone concentration update item and pheromone evaporation coefficient.Then,the mutation operator is introduced in algorithm solve.The new ant colony algorithm accelerates effectively the evolutionary process and shorten the calculation time.In order to verify the new algorithm,the Landsat TM image of Changsha city is chosen as a case study area.The results indicate that the new algorithm obtains the simpler forms of classification rule and reduces the computation time.The remote sensing image classification using improved ant-miner algorithm is more accurate and efficient than conventional Ant-miner algorithm and decision tree.
出处 《测绘学报》 EI CSCD 北大核心 2013年第1期59-66,共8页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(41171326 40771198) 湖南省自然科学基金(08JJ6023)
关键词 蚁群规则挖掘 信息素更新 变异算子 遥感影像分类 ant colony rule mining pheromone update mutation operator remote sensing image classification
  • 相关文献

参考文献21

  • 1WILKINSOMG G. Results and Implications of a Study of Fifteen Years of Satellite Image Classification Experiments[J].IEEE Transactions on Geoscience and Remote Sensing,2005,(03):433-440.doi:10.1109/TGRS.2004.837325.
  • 2郑忠,曾永年,刘慧敏,徐艳艳,于菲菲.并联结构组合分类器的误差分析[J].遥感技术与应用,2011,26(3):340-347. 被引量:7
  • 3马建文;李启青;哈斯巴干.遥感数据智能处理方法与程序设计[M]北京:科学出版社,20051-20.
  • 4COLOMI A,DORIGO M,MANIEZZO V. Distributed Optimization by Ant Colonies[A].Paris:Elsevier Publishing,1991.134-142.
  • 5LU D,WENG Q. A Survey of Image Classification Methods and Techniques for Improving Classification Performances[J].International Journal of Remote Sensing,2007,(05):824-849.
  • 6DORIGO M,GAMBARDELLA L M. Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[J].IEEE Transactions on Evolutionary Computation,1997,(01):53-66.doi:10.1109/4235.585892.
  • 7赵元,张新长,康停军.并行蚁群算法及其在区位选址中的应用[J].测绘学报,2010,39(3):322-327. 被引量:12
  • 8郑春燕,郭庆胜,胡华科.基于蚁群优化算法的线状目标简化模型[J].测绘学报,2011,40(5):635-638. 被引量:14
  • 9PARPINELL R S,LOPES H S,FREITAS A A. Data Mining with an Ant Colony Optimization Algorithm[J].IEEE Transactions on Evolutionary Computation,2002,(04):321-332.doi:10.1109/TEVC.2002.802452.
  • 10王树根,杨耘,林颖,曹重华.基于人工蚁群优化算法的遥感图像自动分类[J].计算机工程与应用,2005,41(29):77-80. 被引量:9

二级参考文献144

共引文献555

同被引文献101

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部