期刊文献+

静止成像平台近景视频运动目标检测与跟踪 被引量:1

Close Range Video Moving Object Detection and Tracking from Stationary Platform
原文传递
导出
摘要 针对摄像机静止的情况,提出了一种可运用于近景平台的运动目标检测与跟踪方法。采用更新函数对背景进行实时更新,通过差分法检测出运动目标。采用卡尔曼滤波器预测目标参数,在运动目标由近及远与由远及近的情况下,根据预测参数跟踪目标,准确捕获目标轨迹。通过对道路交通场景的测试,算法具有较好的实时性和适应环境变化的能力。 A method of moving object detecting and tracking under stationary camera was presented, which can be used for stationary plat- form. The background was updated by a updating function, with moving objects detected by difference method. With the moving objects from near to far and from far to near,kalman filter can be used for predicting the parameters of objects and tracking it. This algorithm has been test- ed on traffic scenes to show the ability of adapting to environmental change.
出处 《世界科技研究与发展》 CSCD 2013年第1期62-64,共3页 World Sci-Tech R&D
关键词 静止平台 卡尔曼滤波 近景视频 运动目标检测与跟踪 stationary platform Kalman filtering close range video moving object detecting and tracking
  • 相关文献

参考文献10

  • 1KILGER M. A shadow handler in a video-based real-time traffic monitoring system[A].Palm Springs,CA,1992.1060-1066.
  • 2STRINGA E. Morphological change detection algorithms for surveillance applications[A].2000.402-411.
  • 3GUO J,CHUG E S,RAJAN D. Foreground motion detection by difference-based spatial temporal entropy image[A].2004.379-382.
  • 4高建伟,李磊,姚睿,孙瑾秋,张艳宁.基于卡尔曼滤波的弱小目标实时检测与跟踪[J].计算机工程,2012,38(2):4-7. 被引量:10
  • 5田峥,徐成,杨志邦,冯堃.智能监控系统中的运动目标检测算法[J].计算机工程,2011,37(4):1-3. 被引量:9
  • 6KARMANN K,BRANDT A. Moving object recognition using an adaptive background memory[A].Elsevier,Amsterdam,The Netherlands,1990.
  • 7STAUFFER C,GRIMSON W. Adaptive background mixture models for real-time tracking[A].Fort Collins,Colorado,1999.246-252.
  • 8LIPTON A,FUJIYOSHI H,PATIL R. Moving target classification and tracking from real-time video[A].Princeton,1998.8-14.
  • 9万琴,王耀南.基于卡尔曼滤波器的运动目标检测与跟踪[J].湖南大学学报(自然科学版),2007,34(3):36-40. 被引量:24
  • 10SMIT R,NTZIACHRISTOS L,BOULTER P. Validation of road vehicle and traffic emission models a review and meta-analysis[J].Atmosheric Environment,2010,(25):2943-2953.

二级参考文献26

  • 1韩建涛,张月,陈曾平.天文图像序列中弱目标的实时检测算法[J].光电工程,2005,32(12):1-4. 被引量:6
  • 2徐正光,鲍东来,张利欣.基于递归的二值图像连通域像素标记算法[J].计算机工程,2006,32(24):186-188. 被引量:71
  • 3Kim K, Chalidabhongse T H, Harwood D, et al. Real-time Foreground-background Segmentation Using Codebook Model[J]. Real-time Imaging, 2005, 11 (3): 172-185.
  • 4Ellis T. Performance Metrics and Methods for Tracking in Surveillance[C]//Proc. of the 3rd IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Copenhagen, Denmark: IEEE Press, 2002: 26-31.
  • 5Wren C, Azabayejani A, Darrel T, et al. Pfinder: Real-time Tracking of the Human Body[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785.
  • 6Stauffer C, Grimson W. Adaptive Background Mixture Models for Real-time Tracking[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. [S. l.]: IEEE Press, 1999.
  • 7Grossi E, Lops M. Sequential Detection of Markov Targets with Trajectory Estimation[J]. IEEE Trans. on Information Theory, 2008, 54(9): 4144-4154.
  • 8Horn B, Schunch B. Detemining Optical Flow[J]. Artifical Intelli- gence, 1981, 17(1-3): 185-203.
  • 9Ince S, Konrad J. Occlusion-aware Optical Flow Estimation[J]. IEEE Trans. on Image Processing, 2008, 17(8): 1443-1451.
  • 10Zhu Yu, Hu Weijun, Zhou Jun, et al. A New Starry Images Matching Method in Dim and Small Space Target Detection[C] // Proc. of ICIG’09. Xi’an, China: [s. n.] , 2009.

共引文献40

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部