期刊文献+

蛋白质相互作用网络演化模型研究进展 被引量:2

Survey on evolutionary models of protein-protein interaction network
在线阅读 下载PDF
导出
摘要 研究蛋白质相互作用网络的演化机制及模型对于理解生物系统的进化及组织形成过程具有重要的意义。到目前为止,已经出现了多种依赖不同演化机制的蛋白质相互作用网络演化模型,这些模型有针对性地体现了真实蛋白质相互作用网络中出现的某些拓扑特征,但同时也具有一定的局限性。通过对典型蛋白质相互作用网络演化模型进行研究,从模型的构建机理、演化模型及真实蛋白质相互作用网络的拓扑特征等方面进行了分析和比较,并总结了各个模型的特点。最后,对蛋白质网络演化模型的进一步发展提出了自己的看法,为深入理解蛋白质相互作用网络演化模型提供有益参考。 The research on the evolutional~~ mechanisms and models of Protein-Protein Interaction (PPI) network is significant for understanding the evolution of the biological systems as well as the formation process of the organisms. So far, there have been kinds of models based on different evolutionary mechanisms. All of these models exhibit certain topological characteristics emerging from the protein-protein interaction networks, while some limitations exist simultaneously. This paper focused on several classic protein-protein interaction network models, analyzing the main ideas of these models and comparing the topological characteristics derived from them with those of real protein-protein interaction networks. A summary of the teatures for each model was given based oil the experiments. At last, several viewpoints for the future research of protein- protein interaction network models were also proposed to provide a useful reference for further studies.
出处 《计算机应用》 CSCD 北大核心 2013年第3期816-820,829,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(60873184 61240046) 湖南省科技计划项目(2011FJ3048) 湖南省财政厅项目(湘财教字[2010]163号)
关键词 蛋白质相互作用网络 演化模型 拓扑特征 Protein-Protein Interaction (PPI) network evolutionary model topological characteristic
  • 相关文献

参考文献31

  • 1UETZ P,GIOT L,CANGNEY G. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae[J].Nature,2000,(6770):623-627.
  • 2GAVIN A C,BOESCHE M,KRAUSE R. Functional organization of the yeast proteome by systematic analysis of protein complexes[J].Nature,2002,(6868):141-147.
  • 3ITO T,CHIBA T,OZAWA R. A comprehensive two-hybrid analysis to explore the yeast protein interactome[J].Proceedings of the National Academy of Sciences(USA),2001,(08):4569-4574.doi:10.1073/pnas.061034498.
  • 4HO Y,GRUHLE A,HEILBUT A. Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry[J].Nature,2002,(6868):180-183.
  • 5IYER V R,HORAK C E,SCAFE C S. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF[J].Nature,2001,(6819):533-538.
  • 6REN B,ROBERT F,WYRICK J J. Genome-Wide location and function of DNA binding proteins[J].Science,2000,(5500):2306-2309.
  • 7SCHWEIGER R,LINIAL M,LINIAL N. Generative probabilistic models for protein-protein interaction networks-the biclique perspective[J].Bioinformatics,2011,(13):i142-i148.
  • 8刘中扬,李栋,朱云平,贺福初.蛋白质相互作用网络进化分析研究进展[J].生物化学与生物物理进展,2009,36(1):13-24. 被引量:11
  • 9高蕾,郭进利.生物网络研究进展述评(英文)[J].生物信息学,2011,9(2):113-119. 被引量:1
  • 10陈润生.与生物信息学相关的两个前沿方向——非编码基因和复杂生物网络[J].生物物理学报,2007,23(4):290-295. 被引量:9

二级参考文献119

  • 1石铁流,李亦学.系统生物学的现状与展望[J].中国科学基金,2005,19(5):282-286. 被引量:5
  • 2Dobzhansky T. Nothing in biology makes sense except in light of evolution. Am Biol Teacher, 1973, 35: 125-129
  • 3Von Mering C, Jensen L J, Kuhn M, et al. STRING 7-recent developments in the integration and prediction of protein interactions. Nucleic Acids Res, 2007, 33(Database issue): D358-D362
  • 4Fraser H B, Hirsh A E, Steinmetz L M, et al. Evolutionary rate in the protein interaction network. Science, 2002, 296(5568): 750-752
  • 5Jordan I K, Wolf Y I, Koonin E V. No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol Biol, 2003, 3(1): 1
  • 6Fraser H B, Wall D P, Hirsh A E. A simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evol Biol, 2003, 3(1): 11
  • 7Bloom J, Adami C. Apparent dependence of protein evolutionary rate on number of interactions is linked to biases in protein-protein interactions data sets. BMC Evol Biol, 2003, 3(1): 21
  • 8Pal C, Papp B, Hurst L D. Highly expressed genes in yeast evolve more slowly. Genetics, 2001, 158(2): 927-931
  • 9Fraser H B, Hirsh A. Evolutionary rate depends on number of protein-protein interactions independently of gene expression level. BMC Evol Biol, 2004, 4(1): 13
  • 10Bloom J D, Adami C. Evolutionary rate depends on number of protein-protein interactions independently of gene expression level: Response. BMC Evol Biol, 2004, 4(1): 14

共引文献17

同被引文献12

  • 1林存刚,徐慧,陈玉成.酵母双杂交系统研究及其应用进展[J].微生物学杂志,2005,25(6):85-89. 被引量:5
  • 2LESKOVEC J, FALOUTSOS C. Sampling from large graphs[ C]// Proceedings of the 2006 12th ACM SIGKDD International Confer- enee on Knowledge Discovery & Data Mining. New York: ACM, 2006 : 631 -636.
  • 3YOON S, LEE S, YOOK S H, et al. Statistical properties of sam- pled networks by random walks [ J]. Physical Review E, Statistical Nonlinear and Soft Matter Physics, 2007, 75(4 Pt 2) : 046114.
  • 4DIJKSTRA E W. A note on two problems in connexion with graphs [J]. Numerisehe Mathematik, 1959, 1(1): 269-271.
  • 5GAUVIN W, RIBEIRO B, TOWSLEY D, et al. Measurement and gender-specific analysis of user publishing characteristics on MySpaee [J]. IEEE Network, 2010, 24(5): 38 -43.
  • 6PAPAGELIS M, DAS G, KOUDAS N. Sampling online social net- works [ J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(3): 662 - 676.
  • 7MURAI F, RIBEIRO B, TOWSLEY D, et al. On set size distribu- tion estimation and the characterization of large networks via sam- pling [ J]. IEEE Journal on Seleeted Areas in Communications, 2012, 31(6): 1017-1025.
  • 8LIU Y, PAN W S, SHAO S H, et al. Ttle effect of feedback sam- pling clock jitter on the performance of direct learning digital predis-tortion in wideband systems [ J]. IEEE Wireless Communication Let- ters, 2013, 2(5): 479-482.
  • 9LI Q G, SHI J Q, LIU T W, et al. A probabilistic approach towards modeling email network with realistic features [ C]//Proceedings of the 2014 23rd International Conference on Computer Communication and Networks. Piscataway, NJ: IEEE, 2014:1-8.
  • 10STAFF T P O. Correction: towards a methodology for validation of centrality measures in complex networks [ J]. PloS ONE, 2014, 9 (5) : e90283.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部