期刊文献+

合金元素对新型Co-Al-W合金摩擦磨损性能的影响 被引量:4

Effect of Alloying Elements on Friction and Wear Performance of Novel Co-Al-W Superalloys
原文传递
导出
摘要 Co-Al-W合金是由γ′-Co3(Al,W)相沉淀强化的新型钴基高温合金。为了研究合金元素Mo、Nb、Ta和Ti对Co-Al-W合金摩擦磨损性能的影响,采用THT07-135型摩擦磨损试验机、SEM等方法研究合金化Co-Al-W合金的室温摩擦磨损性能,并与钴基Stellite6合金相比较。研究发现,9.8W合金的摩擦系数比钴基Stellite6的小。合金元素Mo、Nb、Ti可适度降低9.8W合金的磨损失重和摩擦系数,提高其耐磨性能。Mo、Ti和Nb元素对提高9.8W合金的耐磨性能效果较好;Ta的效果不明显。Co-Al-W合金主要发生氧化磨损和磨粒磨损,但Stellite6合金主要发生剥层和磨粒磨损。 Novel Co-Al-W superalloy is a novel Co-base superalloy, with the precipitation strengthening by a ternary compound γ-Co3(AI,W) phase on γ-Co matrix. The effect of alloying element Mo, Nb, Ta and Ti on friction and wear performance of Co-AI-W superalloys at room temperature was studied by THT07-135 type friction and wear tester and SEM, and cobalt-based Stellite 6 alloy was employed for comparison. Results show that the friction coefficient of 9.8W superalloy is smaller than that of cobalt-based Stellite 6 Alloying elements Mo, Nb and Ti can moderately reduce wear mass loss and friction coefficient of 9.8W superalloy, and improve the wear resistance. The Mo, Ti and Nb elements can clearly improve the wear resistance of 9.8W superalloy while the effect of Ta element is not obvious. The wear mechanism of Co-Al-W superalloy is mainly oxidation and abrasive wear, while that of Stellite 6 alloy mainly is delamination and abrasive wear .
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第1期75-79,共5页 Rare Metal Materials and Engineering
基金 2009年中国科学院"西部之光"(0901ZBB066) 甘肃省中青年科技基金计划(099RJYA018) 兰州理工大学2011年优秀青年教师培养计划项目(1001ZCX009) 兰州理工大学博士科研启动基金(X1001XC021)
关键词 CO-AL-W合金 合金元素 摩擦磨损 机制 Co-AI-W superalloy alloying elements friction and wear mechanism
  • 相关文献

参考文献17

  • 1师昌绪,仲增墉.中国高温合金40年[J].金属学报,1997,33(1):1-8. 被引量:80
  • 2Akane Suzuki;Tresa Pollock M.查看详情[J],Acta Materialia2008(06):1288.
  • 3Sato J;Omori T;Oikawa K.查看详情[J],Science200690.
  • 4Akane Suzuki;Garret DeNolf C;Tresa Pollock M.查看详情[J],Scripta Materialia2007(05):385.
  • 5徐仰涛,夏天东,赵文军,王晓军,闫健强.新型Co-Al-W合金高温氧化激活能研究[J].稀有金属材料与工程,2011,40(4):701-704. 被引量:9
  • 6Arabi Jeshvaghani R;Shamanian M;Jaberzadeh M.查看详情[J],Materials & Design20112028.
  • 7Shin J C;Doh J M;Yoon J K.查看详情[J],Surface and Coatings Technology2003117.
  • 8Zhu Rizhang;He Yedong;Qi Huibin.High-Temperature Corrosion and Materials of High-Temperature Resistance[M]上海:上海科学技术出版社,1995180.
  • 9徐仰涛,夏天东,闫健强,赵文军.合金元素对Co-Al-W合金高温氧化行为的影响[J].中国有色金属学报,2010,20(11):2168-2177. 被引量:7
  • 10Li Meiheng;Sun Xiaofeng;Hu Wangyu.查看详情[J],Oxidation of Metals2006(1-2):137.

二级参考文献35

  • 1侯清宇,高甲生.Co-Cr-W系等离子弧堆焊合金层显微结构的研究[J].稀有金属材料与工程,2004,33(11):1199-1202. 被引量:15
  • 2赵双群,董建新,张麦仓,谢锡善.新型镍基高温合金在950℃和1000℃的氧化行为[J].稀有金属材料与工程,2005,34(2):208-211. 被引量:66
  • 3蒋建敏,董娜,贺定勇,傅斌友,李现兵.电弧喷涂NiCrMo涂层耐蚀性能研究[J].稀有金属,2006,30(1):34-38. 被引量:14
  • 4师昌绪,仲增墉.中国高温合金40年[J].金属学报,1997,33(1):1-8. 被引量:80
  • 5AKANE S, TRESA M P. High-temperature strength and deformation of γ/γ' two-phase Co-Al-W-base alloys[J]. Acta Materialia, 2008, 56(6): 1288-1297.
  • 6SATO J, OMORI T, OIKAWA K, OHNUMA I, KAINUMA R, ISHIDA K. Cobalt-base high-temporature alloys[J]. Science, 2006, 312: 90-93.
  • 7AKANE S, Garret C D, TRESA M P. Flow stress anomalies in γ/γ' two-phase Co-Al-W-base alloys[J]. Scripta Materialia, 2007, 56(5): 385-388.
  • 8ZHANG Y D, YANG Z G, ZHANG C, LAN H. Oxidation behavior of tribaloy T-800 alloy at 800 and 1000 ℃[J]. Oxidation of Metals, 2008, 70: 229-239.
  • 9LIU Pei-sheng, LIANG Kai-ming. High-temperature oxidation behavior of the Co-base superalloy DZ40M in air[J]. Oxidation of Metals, 2000, 53(3/4): 351-360.
  • 10WANG B, GONG J, WANG A Y, SUN C, HUANG R F, WEN L S. Oxidation behavior of NiCrAlY coatings on Ni-based superalloy[J]. Surface and Coatings Technology, 2002, 149(1): 70-75.

共引文献93

同被引文献41

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部