期刊文献+

基于MapReduce的矩阵分解推荐算法研究 被引量:8

Study on Recommendation Algorithm with Matrix Factorization Method Based on MapReduce
在线阅读 下载PDF
导出
摘要 矩阵分解是近几年提出的一种协同过滤推荐技术,但其每项预测评分的计算都要综合大量评分数据,同时在计算时还需要存储庞大的特征矩阵,用单一结点来进行推荐将会遇到计算时间和计算资源瓶颈。结合MapReduce分布式计算框架和矩阵分解推荐算法,设计了一种基于MapReduce的矩阵分解推荐算法来解决该问题,利用Hadoop的分布式缓存技术和MapFile文件结构解决了大特征矩阵在多结点间的高效共享问题并实现了多正则因子的并行处理。通过在Netflix数据集上的实验表明,该MapReduce算法及数据存储方案能带来较高的加速比,从而提高了推荐算法的计算效率。 Matrix factorization is a collaborative filtering recommendation technique proposed in recent years.In the process of recommendation,each prediction depends on the collaboration of the whole known rating set and the feature matrices need huge storage.So the recommendation with only one node will meet the bottleneck of time and resource.A MapReduce-based matrix factorization recommendation algorithm was proposed to solve this problem.The big feature matrices were shared by Hadoop distributed cache and MapFile techniques.The MapReduce algorithm could also handle multi-λ situation.The experiment on Netflix data set shows that the MapReduce-based algorithm has high speedup and improves the efficiency of collaborative filtering.
作者 张宇 程久军
出处 《计算机科学》 CSCD 北大核心 2013年第1期19-21,36,共4页 Computer Science
基金 国家科技支撑计划项目(2012BAH15F03)资助
关键词 协同过滤推荐 矩阵分解推荐 MAPREDUCE HADOOP Collaborative filtering recommendation Matrix factorization MapReduce Hadoop
  • 相关文献

参考文献11

  • 1许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:548
  • 2Koren Y, Bell R, Volinsky C. Matrix Factorization Techniques for Recommender Systems[J]. Computer, 2009,42 (8) : 30-37.
  • 3Bell R M,Koren Y. Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights[C]//Proc of the 7th IEEE International Conference on Data Mining. Omaha NE, USA: IEEE, 2007: 43-52.
  • 4Takacs G, Pilaszy I, Nemeth B, et al. Matrix Factorization and Neighbor Based Algorithms the Netflix Prize Problem [C]// Proceedings of the 2008 ACM conference on Recommender sys- tems. Lausanne, Switzerland: ACM, 2008 : 267 274.
  • 5杨阳,向阳,熊磊.基于矩阵分解与用户近邻模型的协同过滤推荐算法[J].计算机应用,2012,32(2):395-398. 被引量:51
  • 6Zhou Y, Wilkinson D, Schreiber R, et al. Large-Scale ParallelCollaborative Filtering for the Netflix Prize[C]//Proc of the 4th international conference on Algorithmic Aspects in Information and Management. 2008.
  • 7Dean J,Ghemawat S. MapReduee: Simplified Data Processing on Large Clusters[J]. Communication of the ACM 50: anniversary issue, 2008,51 (1) : 107d 13.
  • 8Hadoop. Open-source software for reliable, scalable, distributed computing[-EB/OL], http://hadoop, apache, org/, 2011.
  • 9Mahout. Scalable machine learning and data mining[EB/OL]. http://mahout, apache, org, 2011.
  • 10Takacs G, Pliaszy I, Nemeth B, et al. Investigation of Various Matrix Factorization Methods for Large Recommender Systems [C]// Proc of the IEEE International Conference on Data Mi- ning Workshops. IEEE, 2008: 553-562.

二级参考文献90

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.

共引文献590

同被引文献57

  • 1杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 2张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:197
  • 3SARWAR B, KARYPIS G, KONSTAN J, et al. ltem based collaborative filtering recommendation algorithms [C]// Proceed- ings of the 10th International Conference on World Wide Web. New York: ACM Press, 2001: 285-295.
  • 4JIANG Jing, LU Jie, ZHANG Guangquan, et al. Scaling-up item-based collaborative filtering recommendation algorithm based on Hadoop [ C ]// Proceedings of the IEEE World Congress on Services. Washington: IEEE Computer Society, 2011: 490- 497.
  • 5KOREAN Y. Factor in the neighbors: scalable and accurate collaborative filtering [C]//Proceedings of the ACM Transactions on Knowledge Discovery from Data. New York: ACM Press, 2010, 4( 1 ) :1-24.
  • 6PAPAGELIS M, ROUSIDIS I, PLEXOUSAKIS D, et al. Incremental collaborative filtering for highly-scalable recommenda- tion algorithms[C]// Proceedings of the International Symposium on Methodologies of Intelligent Systems. Berlin, Heidelberg: Springer-Verlag, 2005 : 553-561.
  • 7辛羽,黄佳进.基于熵的协同过滤推荐模型[J].计算机科学,2010,37(10):178-181.
  • 8艾树宇. 基于Hadoop/MapReduce的K_NN算法[J]. 科技传播, 2013(1):203-204,200.
  • 9王淑玲. 增量聚类算法的设计与实现[D]. 包头:内蒙古科技大学, 2009.
  • 10马宏伟,张光卫,李鹏.协同过滤推荐算法综述[J].小型微型计算机系统,2009,30(7):1282-1288. 被引量:204

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部