期刊文献+

无线传感器网络数据的相关性自适应压缩感知 被引量:5

Correlation adaptive compressed sensing of wireless sensor network data
在线阅读 下载PDF
导出
摘要 为减小无线传感器(WSN)网络数据传输过程中相关性发生变化对压缩感知重构精度的影响,提出一种相关性自适应的网络数据重构方法。该方法首先通过迭代对待重构数据的相关性进行估计,进而采用支集元素的两步相关检验方法对网络数据稀疏系数向量中非零元素进行重构,最终得到更为精确的重构数据。仿真结果表明,该算法能有效抑制实际传输过程中各种干扰对网络数据重构的影响,提高网络数据相关性变化情况下的重构准确度。 In order to eliminate the influence of varying correlatioh of Wireless Sensor Network (WSN) data caused by transmission in the performance of the current Compressed Sensing (CS) reconstruction algorithms, a correlation adaptive reconstruction algorithm for network data was proposed. Firstly, the iterative algorithm was used to estimate the correlation of the date to be reconstructed, then two-step correlation of support set were used for coordinating the non-zero value in sparse coefficient vector, and eventually a more precise reconstruction of data was realized. The simulation result shows that this algorithm can effectively restrain the effect of noises in WSN data reconstruction and improve the accuracy of reconstruction under varying correlation.
作者 周剑 张明新
出处 《计算机应用》 CSCD 北大核心 2013年第2期374-377,389,共5页 journal of Computer Applications
关键词 无线传感器网络 压缩感知 数据重构 相关性 自适应 Wireless Sensor Network ( WSN), Compressed Sensing (CS) data reconstruction correlation adaptive
  • 相关文献

参考文献15

  • 1AKYILDIZ I F,SU W,SANKARASUBRAMANIAM Y. Wireless sensor networks:a survey[J].Computer Networks,2002,(04):393-422.doi:10.1016/S1389-1286(01)00302-4.
  • 2孙利民.无线传感器网络[M]北京:清华大学出版社,2005.
  • 3李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展[J].软件学报,2003,14(10):1717-1727. 被引量:622
  • 4DONOHO D L. Compressed sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582.
  • 5CAND(E)S E J. Compressive sampling[A].Madrid:European Mathematical Society,2006.1433-1452.
  • 6CANDES E,ROMBERG J,TAO T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information theory,2006,(04):489-509.doi:10.1109/TIT.2005.862083.
  • 7石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:715
  • 8BOYD S,VANDENBERGHE L. Convex optimization[M].Cambridge:Cambridge University Press,2004.
  • 9CHEN S S,DONOHO D L,SAUNDERS M A. Atomic decomposition by basis pursuit[J].SIAM Journal on Scientific Computing,1999,(01):33-61.
  • 10KIM S J,KOH K,LUSTIG M. An interior-point method for large-scale l1-regularized least squares[J].IEEE Journal of Selected Topics in Signal Processing,2007,(04):606-617.

二级参考文献123

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献1333

同被引文献45

  • 1洪锋,褚红伟,金宗科,单体江,郭忠文.无线传感器网络应用系统最新进展综述[J].计算机研究与发展,2010,47(S2):81-87. 被引量:76
  • 2VECCHIO M, LOPEZ-VALCARCE R, MARCELLONI F. A two-objective evolutionary approach based on topological constraints for node localization in wireless sensor networks[J]. Applied Soft Computing,2012,12(7):1891-1901.
  • 3LAN F,AKYILDIZ L F, VURAN M C. Wireless sensor networks[M]. Hoboken: John Wiley and Sons, 2010:46-49.
  • 4CANDES E J,ROMBERG J,TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. Information Theory, 2006, 52(2):489-509.
  • 5CANDES E,TAO T. Near optimal signal recovery from random projections and universal encoding strategies[J].IEEE Transactions on lnformation Theory, 2006, 52(12) :5406-5425.
  • 6DONOHO D,TSAIG Y.Extensions of compressed sensing[J].Signal Processing,2006,86(3): 533-548.
  • 7CANDES E.The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique,2008,346(9/10):589-592.
  • 8DEVORE V.Deterministic constructions of compressed sensing matrices[J]. Journal of Complexity,2007,23(4/5/6):918-925.
  • 9RAUHUT H. Circulant and Toeplitz matrices in compressed sensing[C/OL].[2015-06-01]. http://arxiv.org/pdf/0902.4394.pdf.
  • 10DONOHO D L, ELAD M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[J]. Proceedings of the National Academy of Sciences, 2003, 100(5): 2197-2202.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部