期刊文献+

径向基函数在动网格中的应用及可并行性研究

Applications of Radial Basis Functions in Dynamic Mesh and Its Parallelizability
原文传递
导出
摘要 径向基函数广泛应用于网格变形、气动外形优化设计、网格优化等领域。近年来,基于径向基函数的动网格技术得到了深入的研究和广泛的应用。本文结合计算流体力学和高性能计算的应用背景,从径向基函数对网格的变形质量和变形效率进行了总结和进一步研究:在网格变形方面,重点对比了不同基函数对同一网格运动变形能力和同一基函数对不同网格运动的适应能力;在网格变形效率方面,分析了算法在计算和存储的瓶颈所在,考虑了OpenMP和GPU这两种共享内存的加速方式,得到较好加速比。最后,分析了当网格规模增大时,动网格在分布式计算和存储模型(MPI)下的处理方法。 Radial basis functions are widely used for mesh deformation, aerodynamic shape optimization, grid optimization, etc. Recently, dynamic mesh techniques based on radial basis functions are widely used and much more attention is paid to them. This paper summaries the quality and efficiency of mesh deformation with the applications of radial basis functions on both CFD (Computational Fluid Dynamics) and HPC (High Performance Computing). In addition, a further research is conducted on the following two aspects: the abilities to satisfy the same mesh motion among different radial basis functions and the abilities to satisfy different mesh motion using one radial basis function; computation and storage bottleneck are analyzed and then parallel solutions based on shared memory models including OpenMP and GPU are considered and a good speed up is obtained. Finally the solution to large-scale dynamic mesh on the conditions of distributed computing and storage model (MPI) is discussed.
出处 《科研信息化技术与应用》 2012年第5期4-12,共9页 E-science Technology & Application
基金 国家高技术研究发展计划(863计划)(2012AA01A304) 国家自然科学基金(91130019)
关键词 径向基函数 径向函数 动网格 网格变形 并行 Radial basis function RBF (Radial Basis Function) Dynamic mesh Mesh deformation Parallel
  • 相关文献

参考文献15

  • 1Clarence O. E. Burg. A robust unstructured grid movement strategy using three-dimensional torsional springs. 34th AIAA Fluid Dynamics Conference, 2004.
  • 2Frederic J. Blom. Considerations on the spring analogy. International Journal for Numerical Methods in Fluids, 2000, 32, 647-668.
  • 3C. Farhat, C. Degand, B. Koobus, M. Lesoirme. Torsional springs for two-dimensional dynamic unstructured fluid meshes. Computer Methods in Applied Mechanics and Engineering, 2008, 163, 231-245.
  • 4Christoph Degand, Charbel Farhat. A three-dimensional torsional spring analogy method for unstructured dynamic meshes. Computers and Structures, 2002, 80, 305-316.
  • 5Dehong Zeng, C. Ross Ethier. A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains. Finite Element in Analysis and Design, 41(2005), 1118-1139.
  • 6Jones, W. T. Samareh-Abolhassani. A grid generation system for Multi-Disciplinary design optimization. 12th AIAAComputational Fluid Dynamic Conference Proceeding, 1995,474-482.
  • 7Xueqiang Liu, Ning Qin, Hao Xia. Fast dynamic grid deformation based on Delaunay graph mapping. Journal of Computational Physics, 2006, 211,405-423.
  • 8Frank R. Scattered data interpolation: Test of some methods. Math Computing, 1982, 38 (175), 191-200.
  • 9Beckert A, Wendland H. Multivariate interpolation for fluid- structure-interaction problems suing radial functions. Aerosp Sci Technol, 2001, 5, 125-134.
  • 10A. de Boer, M.S van der Schoot, H. Bijl. Mesh deformation based on radial basis function interpolation. Computers and Structures, 2007,85, 784-795.

二级参考文献81

  • 1黄冬梅,童水光,陈德华.外挂物投放问题的二维非结构动态网格技术研究[J].空气动力学学报,2006,24(1):73-79. 被引量:2
  • 2Jakobsson S, Amoignon O. Mesh deformation using radial basis functions for gradient-based aerodynamic shape op- timization. Computers & Fluids, 2007, 36(6): 1119-1136.
  • 3Morris A M, Allen C B, Rendall T C S. CFD-based opti- mization of aerofoils using radial basis functions for do- main element parameterization and mesh deformation. International Journal for Numerical Methods in Fl,uids, 2008, 58(8): 827-860.
  • 4Van Zuijlen A H, De Boer A, Bijl H. Higher-order time in- tegration through smooth mesh deformation for 3D fluid- structure interaction simulations. Journal of Computa- tional Physics, 2007, 224(1): 414-430.
  • 5Rendall T C S, Allen C B. Improved radial basis tunction fluid-structure coupling via efficient localized implemen- tation. International Journal for Numerical Methods in Engineering, 2009, 78(10): 1188-1208.
  • 6Botsch M, Kobbelt L. Real-tiine shape editing using radial basis functions. Computer Graphics Forum, 2005, 24(3): 611-621.
  • 7RendaU T C S, Allen C B. Efficient mesh inotion using ra- dial basis functions with data reduction algorithms. Journal of Computational Physics, 2009, 228(17): 6231-6249.
  • 8Liu X Q, Qin N, Xia H. Fast dynamic grid deformation based on Delaunay graph mapping. Journal of Computa- tional Physics, 2006, 211(2): 405-423.
  • 9Hassan O, Morgan K, Weatherill N. Unstructured mesh methods for the solution of the unsteady compressible flow equations with moving boundary components. Philosoph- ical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2007, 365(1859): 2531-2552.
  • 10Zhang L P, Chang X H, Duan X P, et al. A block LU- SGS implicit unsteady incompressible flow solver oil hy- brid dynamic grids for 2D external bio-fluid simulations. Computers & Fluids, 2008, 38(2): 290-308.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部