期刊文献+

基于隶属度函数的自适应加权中值滤波 被引量:2

Based on the Membership Function of the Adaptive Weighted Median Filter
在线阅读 下载PDF
导出
摘要 均值滤波能较好的平滑图像的噪声,但对于高密度的脉冲噪声的抑制能力却有限,针对标准中值滤波的缺点,作者提出了一种基于隶属度函数的自适应加权中值滤波算法。该算法先通过对窗口内像素点进行噪声检测,根据噪声点的个数自适应的调整滤波窗口大小,再按照各像素点隶属度的大小,将各信号按照隶属度的大小赋予权重,最后采用加权中值滤波算法处理信号点,输出结果。 Mean filter to smooth image noise better,but are limited to high-density impulse noise suppression,for the shortcom ings of the standard median filter is proposed based on the membership function of the adaptive weighted median filtering algo rithm.Firstly,through the pixels in the window,the noise detection,adaptive adjustment of the filter window size according to the number of noise points,then in accordance with the size of the membership of each pixel,the signal given in accordance with the size of the membership weight of the final adopted the weighted median filtering algorithm signal processing point out put.The experimental results show that the salt and pepper noise density,the algorithm can effectively filter out the noise,but al so better preserving image edges and details,excellent filtering performance.
作者 王梅 黄华 应大力 WANG Mei,HUANG Hua,YING Da-li(1.Sichuan University School of Electrical Engineering and Information Medical Information Engineering,Chengdu 610065,China;2.Logistics Engineering Institute of the Peoples Liberation Army,Chongqing 401331,China)
出处 《电脑知识与技术》 2012年第11期7565-7567,共3页 Computer Knowledge and Technology
关键词 椒盐噪声 中值滤波 自适应中值滤波 自适应加权中值滤波 salt and pepper noise median filtering adaptive median filter adaptive weighted median filter
  • 相关文献

参考文献6

  • 1Tukey J W.Nonlinear methods for smoothing data[C]//Proc of EASON,74,1974:673-681.
  • 2Gonzalez R C.Woods R E.Digital image processing[M].2nd ed.Newersy:Prentice-Hall’2001.NewJersy:Prentice-HaIl,,2001.
  • 3王晓凯,李锋.改进的自适应中值滤波[J].计算机工程与应用,2010,46(3):175-176. 被引量:82
  • 4Rafael C.Gonzalez Richard E.Woods.数字图像处理:192[M].2版.北京:电子工业出版社,2007:189-190.
  • 5Sziranyi T,Zerubia J,Czuni L,et al.Image Segmentation using Markov random field model in fully parallel cellular network arc hitecture- s[J].Real-Time Imaging,2000,6(3): 195-211.
  • 6Aksoy S.Haralick R M.Feature normalization and likehoodbased similarity measure for image retrival[J].PR, 2001,22(5):563-582.

二级参考文献9

  • 1Gonzalez R C,Woods R E.Digital image processing[M].2nd ed.New Jersey : Prentice-Hall, 2001.
  • 2Kenneth J K.Minimum mean squared error impulse noise estimation and cancellation[J].IEEE Trans Signal Processing,1995,43(7): 1651-1662.
  • 3Lee Y H,Kassam S A.Generalized median filtering and related nonlinear filtering techniques[J].IEEE Trans Acoustics,Speech and Signal Processing, 1985,33 ( 3 ) : 672-683.
  • 4Tukey J W.Nonlinear methods for smoothing data[C]//Proc of EASCON'74, 1974:673-681.
  • 5Lin H,Willson A N.Median filter with adaptive length[J].IEEE Trans Circuits and Systems, 1988,35(6):675-690.
  • 6Hwang H,Haddad R A.Adaptive median filters:New algorithms and results[J].IEEE Trans Signal Processing, 1995,4(4):499-502.
  • 7Abreu E,Lightstone M,Mitra S K,et al.A new efficient approach for the removal of impulse from highly corrupted images[J].IEEE Trans Image Processing, 1996,5 (6) : 1012-1025.
  • 8Kundu A,Vaidyanathan P P.Applieation of two-dimensional generalized mean filtering for removal of impulse noises from images[J] IEEE Trans Acoustics,Speech and Signal Processing,1984,32(3): 600-609.
  • 9Hashem M M,Wahdan A M A,Salem A,et al.Extending the application of conditional signal adaptive median fiher to impulsive noise[C]//The 2006 International Conference on Computer Engineering and Systems,2006:355-360.

共引文献81

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部