摘要
以长耳鸮翼型为仿生原型,采用逆向工程方法提取鸮翼翼型下表面特征点并利用B样条曲线进行拟合建立鸮翼仿生重构模型。通过数值求解耦合Langtry-Menter SST模型的雷诺时均Navier-Stokes方程,研究了仿生翼型的前缘弧线曲率、前缘厚度、前端倾角、翼型中部下表面曲率以及尾部厚度等参数对翼型升阻比的影响,获得了一种能有效抑制大攻角下流动分离发生的仿生翼型。正交试验结果表明:翼型前缘厚度对仿生翼型的升阻比影响最大,随着翼型前缘厚度的减少,翼型升阻比增加;翼型下表面中部曲率和翼型尾部厚度均存在最优值使仿生翼型升阻比最大。
As the bionic prototype,five feature points of the lower surface of the long-eared owl wing are extracted by using the reverse reconstruction technique.The B-spline curve is adopted to establish the bionic airfoil model.Three-dimensional viscous Reynolds-averaged Navier-Stokes equations and SST(shear stress transport) turbulence model coupled with Langtry-Menter transition model are solved to perform the orthogonal experiment.The effects of front arc curvature,leading edge thickness,leading edge angle,lower surface curvature and trailing edge thickness on the lift-drag ratio are investigated.Based on the orthogonal experiment results,an optimal bionic airfoil that suppressed effectively the flow separation under the higher angle of attack is obtained.The numerical results show that the leading edge thickness is the most important factor to influence the airfoil performance. The lift-drag ratio increases while the leading edge thickness is reduced.There are optimal lower surface curvature and trailing edge thickness for the maximum lift-drag ratio of the bionic airfoil.
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2013年第1期79-82,共4页
Journal of Engineering Thermophysics
基金
中央高校基本科研业务费专项资金资助项目(No.xjj20100073)
中国博士后科学基金面上资助项目(No.20100481329)
中国博士后科学基金特别资助项目(No.201104665)
关键词
长耳鸮
仿生
翼型
正交试验
数值模拟
long-eared owl wing
bionic
airfoil
orthogonal design
numerical simulation