期刊文献+

基于EEMD和改进的形态滤波方法的轴承故障诊断研究 被引量:38

Rolling element bearing fault diagnosis based on EEMD and improved morphological filtering method
在线阅读 下载PDF
导出
摘要 轴承故障会导致振动信号中出现冲击响应成分,可通过对冲击响应成分的周期的检测与提取,进行局部故障诊断。但在复杂工况下,故障脉冲易被周围噪声淹没,在分析EEMD和形态学滤波方法的基础上,将EEMD方法与形态学滤波方法相结合,提出结构元素(SE)选择方法,并用于本征模态信号中冲击响应特征的提取。通过将该方法用于轴承外圈、内圈局部故障状态下的特征的检测,结果表明该方法能有效提取周期性脉冲成分并抑制噪声。 Localized defects in bearings tend to arouse periodical impulsive vibration, and bearing fault diagnosis can be realized by detecting and extracting impulsive response components. However, under the practical environment, the fault-related impacts are usually overwhelmed by noise. Based on analysis of ensemble empirical mode decomposition (EEMD) and morphological filtering, a hybrid method combining EEMD method and an improved morphological filtering was proposed. A new structural element decision strategy was proposed to analyze intrinsic mode functions (IMFs) and extract periodical impulsive signal features. The performance of the proposed method was validated by detecting vibration signals of defective rolling bearings with outer and inner circle faults. The results showed that the proposed method is effective for extracting periodic impulses and suppressing noise of vibration signals
出处 《振动与冲击》 EI CSCD 北大核心 2013年第2期39-43,66,共6页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(51075379) 江苏省自然科学基金资助项目(BK2010225)
关键词 轴承 故障诊断 整体平均经验模态分解 滤波 数学形态学 bearing fault diagnosis EEMD filtering mathematical morphology
  • 相关文献

参考文献12

  • 1钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社,2007.119-131.
  • 2Wang D, Tse P, Tse Y. A morphogram with the optimal selection of parameters used in morphological analysis for enhancing the ability in bearing fault diagnosis [ J ]. Measurement Science and Technology, 2012, 23:065001 - 065015.
  • 3Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non- stationary time series analysis [ J ]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454 : 903 - 995.
  • 4Zhang J, Yah R, Feng Z. Performance enhancement of ensemble empirical mode decomposition [ J ]. Mechanical Systems and Signal Processing, 2010, 24(7) : 2104 -2123.
  • 5陈略,訾艳阳,何正嘉,成玮.总体平均经验模式分解与1.5维谱方法的研究[J].西安交通大学学报,2009,43(5):94-98. 被引量:71
  • 6郑旭,郝志勇,卢兆刚,杨骥.基于MEEMD的内燃机机体活塞敲击激励与燃烧爆发激励分离研究[J].振动与冲击,2012,31(6):109-113. 被引量:32
  • 7曹冲锋,杨世锡,杨将新.大型旋转机械非平稳振动信号的EEMD降噪方法[J].振动与冲击,2009,28(9):33-38. 被引量:67
  • 8Lei Y, He Z, Zi Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2009, 23 (4) : 1327 -1338.
  • 9Nikolaou N G, Antoniadis I A. Application of morphological operators as envelope extractors for impulsive-type periodic signals [ J ]. Mechanical Systems and Signal Processing, 2003, 17 (6): 1147-1162.
  • 10胡爱军,唐贵基,安连锁.基于数学形态学的旋转机械振动信号降噪方法[J].机械工程学报,2006,42(4):127-130. 被引量:95

二级参考文献55

共引文献381

同被引文献438

引证文献38

二级引证文献472

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部