期刊文献+

Modeling and Fault Monitoring of Bioprocess Using Generalized Additive Models (GAMs) and Bootstrap

Modeling and Fault Monitoring of Bioprocess Using Generalized Additive Models (GAMs) and Bootstrap
在线阅读 下载PDF
导出
摘要 Fault monitoring of bioprocess is important to ensure safety of a reactor and maintain high quality of products. It is difficult to build an accurate mechanistic model for a bioprocess, so fault monitoring based on rich historical or online database is an effective way. A group of data based on bootstrap method could be resampling stochastically, improving generalization capability of model. In this paper, online fault monitoring of generalized additive models (GAMs) combining with bootstrap is proposed for glutamate fermentation process. GAMs and bootstrap are first used to decide confidence interval based on the online and off-line normal sampled data from glutamate fermentation experiments. Then GAMs are used to online fault monitoring for time, dissolved oxygen, oxygen uptake rate, and carbon dioxide evolution rate. The method can provide accurate fault alarm online and is helpful to provide useful information for removing fault and abnormal phenomena in the fermentation. 差错监视 bioprocess 是重要的保证一个反应堆的安全并且维持产品的高质量。为 bioprocess 造一个精确机械学的模型是困难的,因此差错基于富有的历史或联机的数据库监视是一个有效方法。一组数据基于自举方法能随机地是采样,改善归纳能力当模特儿。在这份报纸,在网上指责与结合的概括添加剂模型(鲸鱼群) 监视自举为 glutamate 被建议发酵过程。鲸鱼群并且自举首先被用来从 glutamate 发酵实验基于联机、离线的正常取样的数据决定信心间隔。然后,鲸鱼群被用来在网上指责在时间,溶解的氧,氧举起率,和二氧化碳进化监视率。方法能在网上提供精确差错警报并且是有用的为在发酵移开差错和反常现象提供有用信息。
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1180-1183,共4页 中国化学工程学报(英文版)
基金 Supported by the National Natural Science Foundation of China (61273131) 111 Project (B12018) the Innovation Project of Graduate in Jiangsu Province (CXZZ12_0741) the Fundamental Research Funds for the Central Universities (JUDCF12034)
关键词 bioprocess fault monitoring generalized additive model glutamic acid fermentation BOOTSTRAP MODELING Bootstrap GAMS 故障监控 加法模型 生物加工过程 广义 在线数据库 谷氨酸发酵
  • 相关文献

参考文献8

二级参考文献34

  • 1毛勇,周晓波,皮道映,孙优贤,WONG Stephen T.C..Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm[J].Journal of Zhejiang University-Science B(Biomedicine & Biotechnology),2005,6(10):961-973. 被引量:11
  • 2ZHAO,Xiaoqiang(赵小强),RONG,Gang(荣冈).Blending Scheduling under Uncertainty Based on Particle Swarm Optimization Algorithm[J].Chinese Journal of Chemical Engineering,2005,13(4):535-541. 被引量:16
  • 3杨帆,萧德云.概率SDG模型及故障分析推理方法[J].控制与决策,2006,21(5):487-491. 被引量:15
  • 4Ender,D.,"Process control performance:Not as good as you think",Control Eng.,9,180-190(1993).
  • 5Astrom,K.,"Computer control of a paper machine-An application of linear stochastic control theory",IBM J.,7,389-396(1967).
  • 6DeVries,W.R.,Wu,S.M.,"Evaluation of process control effectiveness and diagnosis of variation in paper basis weight via multivariate time series analysis",IEEE Trans.Auto.Control,23(4),702-708(1978).
  • 7Huang,B.,Shah,S.L.,Performance Assessment of Control Loops:Theory and Applications,Springer (1999).
  • 8Harris,T.J.,Seppala,C.T.,Desborough,L.D.,"A review of performance monitoring and assessment techniques for univariate and multivariate control systems",J.Proc.Control,9,1-17(1999).
  • 9Harris,T.J.,Seppala,C.T.,"Recent developments in controller performance monitoring and assessment techniques" In:Proceedings of the Sixeh International Chemical Process Control Conference (CPC-Ⅵ),Tucson,Arizona,220-250(2001).
  • 10Qin,S.J.,"Control performance monitoring:A review and assessment",Comp.Chem.Eng.,23,173-186(1998).

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部