期刊文献+

一类二阶非线性保守系统周期轨与同异宿轨的显式表示

Explicit representations of periodic orbits and homoclinic and heteroclinic orbits in a second-order nonlinear conservative system
在线阅读 下载PDF
导出
摘要 给出了一类二阶非线性保守系统周期轨道族与同异宿轨道显式表示的初等积分方法;同时指出:根据周期轨道族外围分界线环类型的不同,周期轨道族需由不同的Jacobian椭圆函数来表示并揭示了其中的原因.利用文中方法,通过变量替换,旋转以及积分因子等手段,可推导获得某些更复杂非线性系统周期轨道族与同异宿轨道的显式式.因此所得结果对于非线性(扰动)系统分支与混沌的研究有帮助. The elementary integration method for deriving the explicit representations of periodic orbits families and homoclinic and heteroclinic orbits in a second-order nonlinear conservative system is given. It is pointed out that, according to the different separatrixes of periodic orbits families, the different Jacobian elliptic functions should be used. The associated reasons are revealed. Utilizing the method in this paper, the explicit representations of periodic orbits families and homoclinic and hete- roclinic orbits in some more complex nonlinear systems can be obtained through changes of variables, rotations and integral factors, etc. Thus, the results chaos in nonlinear systems under perturbations. in this paper benefit the study of bifurcations and
出处 《高校应用数学学报(A辑)》 CSCD 北大核心 2012年第4期390-398,共9页 Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金 国家自然科学基金(11102041) 中国博士后科学基金(2011M500803) 福建省教育厅A类项目(JA10065)
关键词 非线性保守系统 周期轨 同异宿轨 显式表示 Jacobian椭圆函数 nonlinear conservative systems periodic orbits homoclinic and heteroclinic orbits explicit representations Jacobian elliptic functions
  • 相关文献

参考文献7

  • 1Han Maoan, Jiang Katie, Green David Jr. Bifurcations of periodic orbits, subharmonics solutions and invariant tori of high-dimensional systems[J]. Nonlinear Anal, 1999, 36: 319- 329.
  • 2Wiggins S, Holmes P. Periodic orbits in slowly varying oscillators[J]. SIAM J Math Anal, 1987, 18 (3): 592-611.
  • 3Wiggins S, Holmes P. Homoclinic orbits in slowly varying oscillators[J]. SIAM J Math Anal, 1987, 18 (3): 612-629.
  • 4Li Jibin, Chen Fengjuan. Knotted periodic orbits and chaotic behaviors of a class of three- dimensional flows[J]. Inter J Bifur Chaos, 2011, 21(6): 1583-1593.
  • 5Siewe M, Tchawoua C. Homoclinic bifurcation and chaos in Φ6- Rayleigh oscillator with three wells driven by an amplitude modulated force[J]. Inter J Bifur Chaos, 2011, 21(9): 2505-2523.
  • 6Nayfeh A H, Mook D T. Nonlinear Oscillations[M]. New York: John Wiley and Sons, 1979.
  • 7Byrd P F, Friedman M D. Handbook of Elliptic Integrals for Engineers and Physicists[M]. Berlin: Springer-Verlag, 1954.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部