期刊文献+

一种基于人脸核心特征的PCA人脸识别算法及应用 被引量:19

Implementation and Application of One PCA Face Recognition Algorithm Based on the Core Features of the Face
在线阅读 下载PDF
导出
摘要 传统的PCA人脸识别算法是直接从图像中提取人脸进行识别,由于人脸的大小、角度,光照等原因导致识别率低。本文提出的基于人脸核心特征的人脸识别算法是通过人脸核心特征,包括左眼、右眼、鼻子、嘴巴进行人脸识别。这种算法能有效克服人脸识别中的大小、角度、光照等不利因素,显著提高了人脸识别率,并成功应用于智能相片搜索系统。 The traditional PCA(Principle Component Analysis)face recognition algorithm recognizes faces by face images directly,its recognition rate is low because of the size,angle,light and other factors of the face.The face recognition algorithm based on the core features of the face recognizes faces by the core features of the face,including the left eye,right eye,nose,mouth.This algorithm can effectively overcome the unfavorable factors,such as the size,angle,light on the face and others,significantly improve face recognition rate,and successful implement the intelligent photo search system.
作者 李冠楠 李强
出处 《电子器件》 CAS 北大核心 2012年第5期607-610,共4页 Chinese Journal of Electron Devices
关键词 人脸识别 核心特征 PCA face recognition core features PCA(Principle Component Analysis)
  • 相关文献

参考文献7

  • 1Viola P, Jones M J Robust. Real-Time Face Detection [ J ]. International Journal of Computer Vision,2004,57 ( 2 ) : 137-154.
  • 2Viola P,Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features [ C ]//Proc. IEEE Conf. Computer Vision and Pattern Recognition,2001:511-518.
  • 3Kirby M, Sirovich L. Application of the KL Procedure for the Char- acterization of Human Faces[ J]. IEEE Tran Pattern Anal Machine Intell, 1990 ( 12 ) : 103-108.
  • 4Turk M, Pentland A. Eigenfaces for Recognition [ J ]. J Cognitive Neuroscience, t991,3( 1 ) :71-86.
  • 5Yambor W, Draper B, Beveridge J R. Analysis of PCA-Based Face Recognition Algorithms : Eigenvector Selection and Distance Measures [ C ]//Second Workshop on Empirical Evaluation Methods in Computer Vision,2000.
  • 6甘玲,朱江,苗东.扩展Haar特征检测人眼的方法[J].电子科技大学学报,2010,39(2):247-250. 被引量:22
  • 7秦宏伟,孙劲光,王强,林媛媛.基于自适应预处理和PCA的人脸识别方法的研究[J].计算机工程与应用,2011,47(14):186-188. 被引量:10

二级参考文献20

共引文献30

同被引文献121

引证文献19

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部