期刊文献+

基于集成学习的音乐识别方法研究 被引量:4

Research of Music Recognition Based on Ensemble Learning
在线阅读 下载PDF
导出
摘要 随着信息和多媒体的发展,音乐数据变得更加丰富。如何能够高效地检索和管理音乐数据是一个挑战。音乐分类是音乐信息检索领域的一个关键问题,可以很好地管理不同类别的音乐数据。基于K-Means聚类的循环静态选择策略是一种双层选择集成模型,它的第一层是通过基于聚类的选择策略在全部的基分类器中筛选出相互之间差异性较大的候选基分类器集合,然后通过第二层的循环静态选择策略进行第二轮的选择操作,并进行投票集成,以达到更好的集成效果。通过两组标准的音乐数据集验证了该策略的有效性。 With the development of information and multimedia technologies,music data beoame more and more diversity.It is a challenge to retrieve and manage the music data.Music classification is the key issue of music information retrieval and can help us manage different kinds of music data.The static selective strategy of circulating combination based on K-Means clustering is a double-layer selective ensemble model.In the first layer,clustering algorithm is employed to choose the classifiers with high diversity.Then,via the circulating framework,classifier candidates are generated by the static selective strategy and voted for the last result.Experiments on two bench music datasets verify the performance of the proposed strategy.
出处 《计算机科学》 CSCD 北大核心 2012年第12期184-187,203,共5页 Computer Science
基金 国家自然科学基金(61001013 61102136) 福建省自然科学基金(2011J05158)资助
关键词 音乐信息检索 音乐分类 选择性集成学习 聚类 机器学习 Music information retrieval Music classification Selective ensemble learning Clustering Machine learning
  • 相关文献

参考文献38

  • 1Fu Zhou-yu, Lu Guo-jun, Ting Kai-ming, et al. A survey of audio- based music classification and annotation [J]. IEEE Trans on Multimedia, 2011,13(2): 303.
  • 2Aryafa K, Shokoufandeh A. Music genre classification using ex- plicit semantic analysis [C]//Proc of the 1st Int ACM workshop on Music information retrieval with user-centered and multimo- dal strategies. New York: ACM, 2011 : 33.
  • 3Duda R O, Hart P E. Pattern classification [M]. New York:Wi- ley, 2000.
  • 4Shen jialie, Shepherd J, et al. Intelligent music information sys- tems: tools and methodologies[M]. Michigan: Idea Group Re- ference, 2007 : 31.
  • 5Cover T, Hart P. Nearest neighbor pattern classification [J]. IEEE Trans on Information Theory, 1967,13 (1) : 21.
  • 6Boser B E,Guyon I M, Vapnik V N. A training algorithm for op- timal margin classifiers [C]//Proc of the fifth annual workshop on Computational learning theory. New York: ACM, 1992 : 144.
  • 7Tzanetakis G,Cook P. Musical genre classification of audio sig- nals [J]. IEEE Trans on Speech Audio Process, 2002, 10 (5): 293.
  • 8Pampalk E,Dixon S,Widmer G. On the evaluation of perceptual similarity measures for music [C]//Proc of the 6th International Conference on Digital Audio Effects. London, 2003.
  • 9Fu Zhou-yu, Lu Guo-jun, Ting Kai-ming, et al. On feature com- bination for music classification [C]//Proc of the 2010 joint IA- PR international conference on Structural,syntactic,and statisti- cal pattern recognition. Berlin: Springer, 2010: 453.
  • 10Lanckriet G R G, Cristianini N, Ghaoui L E, et al. Learning the Kernel matrix with semi-definite programming [J]. The Journal of Machine Learning Research, 2004,5 : 27.

二级参考文献103

  • 1徐燕,李锦涛,王斌,孙春明,张森.不均衡数据集上文本分类的特征选择研究[J].计算机研究与发展,2007,44(z2):58-62. 被引量:20
  • 2刘胥影,吴建鑫,周志华.一种基于级联模型的类别不平衡数据分类方法[J].南京大学学报(自然科学版),2006,42(2):148-155. 被引量:23
  • 3李建中,杨昆,高宏,骆吉洲,郭政.考虑样本不平衡的模型无关的基因选择方法[J].软件学报,2006,17(7):1485-1493. 被引量:24
  • 4王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 5Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 6Moghaddam B, Wahid W, Pentland A. Beyond eigenfaces: Probabilistic matching for face recognition. In Proc. the IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 1998, pp.30-35.
  • 7Moghaddam B, Pentland A. Probabilistic visual learning for object representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 696-710.
  • 8Jolliffe I T. Principal-component Anklysis. New York:Springer-Verlag, 1986.
  • 9Moghaddam B. Jebara T, Pentland A. Bayesian face recognition. Pattern Recognition, 2000, 33(11): 1771-1782.
  • 10Pentland A, Moghaddam B, Starner T. View-based and modular eigenspaces for face recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Seattle,WA, 1994, pp.84-91.

共引文献183

同被引文献34

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部