期刊文献+

哈特曼-夏克波前传感器的插值重构算法 被引量:5

Insert Algorithm of Wavefront Reconstructions for Hartmann-Shack Wavefront Sensor
原文传递
导出
摘要 为实现使用Hartmann-Shack(哈特曼-夏克)波前传感器对高分辨率物镜进行高精度检测,提出了使用二维插值多项式替代泽尼克(Zernike)多项式为重构基底对被测波前进行模式重构的方法。为了验证方法的可行性,仿真高分辨率物镜设计波像差为待测波前,得到重构误差均方根(RMS)值为0.0609λ。模拟理想球面波为待测波前,重构精度随拟合阶数增加稳定变化。经过重构正弦波前、余弦波前、非球面波前以及含有低阶球差、彗差、象散、场曲和畸变等像差的一般波前,进一步对比了Zernike多项式和二维插值多项式为基底的重构精度,得到了一种较Zernike多项式拟合精度更高更稳定的模式重构基底。 In order to use Hartmann-Shack wavefront sensor testing lithography objective lens accurately, two- dimension insert polynomial is proposed to replace Zernike polynomial, which is the basic of modal wavefront reconstruction. The wavefront aberration of a lithography lens is simulated to be the under-test wavefront. The root- mean-square (RMS) value of the reconstruction error reaches 0. 0609λ. The possibility of this method is proved. The accurate of reconstruction changes stablely by increase of polynomial fitting orders when the under-test wavefront is ideal spherical wavefront. By reconstructing sine wavefront, cosine wavefront, aspherical wavefront and normal wavefront which contains low order of spherical aberration, coma, astigmatism, field curvature and distortion aberrations, the accuracy of Zernike modal wavefront reconstruction and two-dimension insert modal wavefront reconstruction is compared. A more stable and accurate basic of modal wavefront reconstruction is obtained.
作者 李晶 巩岩
出处 《激光与光电子学进展》 CSCD 北大核心 2012年第12期22-28,共7页 Laser & Optoelectronics Progress
基金 国家杰出青年科学基金(41104122)资助课题
关键词 哈特曼-夏克波前传感器 模式波前重构 泽尼克多项式 二维插值多项式 Hartmann-Shack sensors modal wavefront reconstruction Zernike polynomial two-dimension insert polynomial
  • 相关文献

参考文献12

  • 1D. Malacara. Optical Shop Testing[M]. Canada: John Wiley & Sons, Inc. , Publication, 2007. 361-375.
  • 2B. C. Platt, R. Shack. History and principles of Shack-Hartmann wavefront sensing. J. Refractive Surgery, 2001, 17:S573-S577.
  • 3钮赛赛,沈建新,梁春,张运海.人眼像差探测哈特曼波前传感器的质心优化[J].光学精密工程,2011,19(12):3016-3024. 被引量:15
  • 4F. Zernike. Diffraction theory of knife-edge test and its improved form, the phase contrast method[J]. Monthly Noticer of the Royal Astronomical Society, 1934, 94 : 377-384.
  • 5B. R. A. Nijboer. The diffraction theory of optical aberrations, part I: general discussion of the geometrical aberrations [J]. Physica, 1943, 10:679-692.
  • 6段海峰,李恩得,王海英,杨泽平,张雨东.模式正交性对哈特曼-夏克传感器波前测量等的影响[J].光学学报,2003,23(9):1143-1148. 被引量:8
  • 7张金平,张学军,张忠玉,郑立功.Shack-Hartmann波前传感器检测大口径圆对称非球面反射镜[J].光学精密工程,2012,20(3):492-498. 被引量:17
  • 8L. Seifert, H. J. Tiziani, W. Osten. Wavefront reconstruction with the adaptive Shack-Hartmann sensor. Opt. Commun. , 2005, 245(1-6) : 255-269.
  • 9单宝忠,王淑岩,牛憨笨,刘颂豪.Zernike多项式拟合方法及应用[J].光学精密工程,2002,10(3):318-323. 被引量:110
  • 10J. S. Lee, H. S. Yang, J. W. Hahn. Wavefront error measurement of high-numerical-aperture optics with a Shack- Hartmann sensor and a point source[J]. Appl. Opt. , 2007, 46(9): 1411-1415.

二级参考文献39

共引文献192

同被引文献50

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部