摘要
将被插函数进行对称对式求和,构造一个组和型的三角插值多项式Sn(f;r,x),使得它在全轴上一致收敛到每个以2π为周期的连续函上,且对C2π连续函数的逼近均具有最佳收敛阶,这时0≤j≤r,r为任给的奇自然数。
In this paper, the function is summed by means of symmetry. The trigomometric interpolation combination polynomial Sn. (f; r, x ) is constructed. If the function f(x)∈, C2π, then Sn (f; r, x ) converge the function f(x) uniformly on (-∞, + ∞ ), and the convergence order is the best if f(x )∈ Cj2π, where 0≤j≤ r, r is an arbitrary odd natural number.
出处
《吉林工业大学自然科学学报》
CSCD
2000年第2期62-65,共4页
Natural Science Journal of Jilin University of Technology
关键词
三角插值多式
一致收敛
组合型
逼近
连续函数
trigonometric interpolation polynomial
symmetrical summation
convergence uniform
the best convergence order