期刊文献+

奇异值分解降噪的改进方法 被引量:19

An Improved Method for Noise Reduction Based on Singular Value Decomposition
在线阅读 下载PDF
导出
摘要 利用测试信号构造Hankel矩阵进行奇异值分解(SVD)是消除随机噪声干扰的有效方法,其关键是奇异值数目的选取,但目前尚无成熟有效的确定方法。针对这一问题,提出了一种奇异值分解降噪的改进方法,该方法依据去噪后信号极值点数量随奇异值数目变化的关系,可以准确选取与最优降噪效果对应的奇异值数目。仿真及实验结果表明,该方法准确、有效。利用该方法处理船舶和机械设备振动噪声测试信号,可有效提高其信噪比,最大程度地优化信号去噪的效果,提高分析的可靠性。 Using Singular Value Decomposition(SVD)of constructed Hankel matrix by measured signal is an effective method for eliminating the random noise.The key is to choose the rank of the Hankel ma trix,but there is no mature and effective method now.An improved method was proposed according to the relationship between the extremum points of the noise elimination signal and the rank of the matrix.It wass easy to choose the rank of the matrix which leads to the best noise elimination result.Simulation and experi ment validated this method.The noise and vibration signal measured on ship and mechanical equipment could be refined through this method to improve the signal to noise ratio,optimize the noise elimination ef fect as much as possible,and the analysis which depends on the signal is more reliable.
出处 《中国舰船研究》 2012年第5期83-88,共6页 Chinese Journal of Ship Research
基金 中国舰船研究设计中心研发基金(VFA12-S14)
关键词 奇异值分解 去噪 极值点 Singular Value Decomposition(SVD) noise elimination extremum points
  • 相关文献

参考文献9

  • 1MARUDACHALAM K, WICKS A L. An attempt to quantify the errors in the experimental modal analysis [C]//The 9th International Modal Analysis Conference. Florence, 1991 : 1522-1527.
  • 2JUNG H, EWINS D J. On the use of simulated "experi- mental" data for evaluation of modal analysis methods [ C ]//Proceedings of the 10th International Modal Anal- ysis Conference, 1992 : 421-429.
  • 3MITCHELL L D. Modal testing methods : quality, quan- tity and the unobtainable [J]. Sound and Vibration, 1994,28( 11 ) : 10-17.
  • 4FAHEY S O, WICKS A L. Noise sources in mechanical measurements [ J ]. Experimental Techniques , 2000,24 (2) : 40-43.
  • 5杨文献,姜节胜.机械信号奇异熵研究[J].机械工程学报,2000,36(12):9-13. 被引量:45
  • 6吕永乐,郎荣玲,梁家诚.基于信噪比经验值的奇异值分解滤波门限确定[J].计算机应用研究,2009,26(9):3253-3255. 被引量:7
  • 7GOLUB G H, VAN C F, LOAN V V. Matrix computa- tions [M]. 3rd Edition. Maryland: John Hopkins Stu- dues in Mathematical Sciences, 1996.
  • 8修春波,刘向东,张宇河.相空间重构延迟时间与嵌入维数的选择[J].北京理工大学学报,2003,23(2):219-224. 被引量:52
  • 9SANLITURK K Y, CAKAR O. Noise elimination from measured frequency response functions [J]. Mechani- cal Systems and Signal Processing, 2005,19(3) :615- 631.

二级参考文献26

  • 1王太勇,王正英,胥永刚,李瑞欣.基于SVD降噪的经验模式分解及其工程应用[J].振动与冲击,2005,24(4):96-98. 被引量:39
  • 2孟建,屈梁生,刘晗.全息谱的分解及其在机械诊断中的应用[J].机械工程学报,1997,33(2):106-110. 被引量:8
  • 3TUUPS D W, KURNARESAN R, KIRSTEINS I. Data adaptive signal estimation by singular value decomposition of a data matrix[ C]//Proc of IEEE. [S. l. ] :IEEE Press,1982:684-685.
  • 4BAE S N, UDOMHUNSAKUL S. Noise suppression using block based singular value decomposition filtering [ C ]//Proc of IEEE APCC2007. 2007:491-494.
  • 5RICE B. Using singular value decomposition to recover periodic wave- forms in noise and with residual carrier:SVD and signal[ C]//Proc of II. [ S. 1. ] : Elsevier Science Publishers,1991:419-428.
  • 6KONSTANTINIDES K, YAO K. Statistical analysis of effective singular values in matrix rank determination[J]. IEEE Ttans on Acoustics, Speech, and Signal Processing, 1988, 36(5): 757-763.
  • 7BOX P E G, JENKINS M G, REINSEL C G. Time series analysis: forecasting and control[ M]. 3rd ed. [ S. l. ] :Pearson Education Asia Ltd, 2005.
  • 8GOLUB H G, VAN LOAN C F. Matrix computations[ M]. 3rd ed. [ S.l. ] :The Johns Hopkins University Press, 1996.
  • 9Packard N H, Crutchfield J P, Farmers J D, et al.Geometry from a time series[J]. Phys Rev Lett, 1980(45):712--716.
  • 10Takens F. Detecting strange attractors in fluid turbulence [A]. Rand D, Young L S. Dynamical systems and turbulence[C]. Berlin: Springer, 1981.366--381.

共引文献98

同被引文献187

引证文献19

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部