期刊文献+

基于复杂网络的微博舆情分析 被引量:39

Microblog Public Opinion Analysis Based on Complex Network
在线阅读 下载PDF
导出
摘要 微博作为迅速崛起的新兴社会媒体,在网络舆情领域日益引起研究者的关注。为了弥补传统网络舆情分析的不足,本文将共词网络分析和复杂网络的思想与方法拓展到微博舆情分析中,并设计了基于网络可视化的微博舆情分析模型。并通过实证分析对其效果进行验证,发现共词网络可有效探测舆论热点,复杂网络在舆论领袖发现中也可取得较好效果。本文为基于微博的网络舆情分析提供了有效的可视化途径,探索和拓展了其研究方法,并提供了有益借鉴。 As a rapidly emerging social media, microblog increasingly attracted the attention of researchers in the field of internet public opinion. To compensate for the deficiencies of the traditional network public opinion analysis, this paper expands the ideas and methods of co-word network and complex network analysis to the micro-blogging public opinion analysis, and designs a micro-blogging public opinion analysis model based on network visualization. Empirical analysis of the model' s effectiveness indicates that the co-word network can effectively locate hot spots of public opinion, and in the discovery of opinion leaders, complex network also achieves good results. This paper has explored and expanded the research methods for the analysis of internet public opinion based on micro-blogging, provided a conducive visualization method and a useful reference.
出处 《情报学报》 CSSCI 北大核心 2012年第11期1153-1162,共10页 Journal of the China Society for Scientific and Technical Information
基金 教育部人文社会科学重点研究基地重大项目“面向决策的企业信息资源集成研究”(批准号:2009JJD870002) 教育部人文社会科学研究项目“企业信息资源集成研究”(批准号:2008JA870013)的研究成果
关键词 共词网络 复杂网络 微博 网络舆情 co-word network, complex network, microblog, internet public opinion
  • 相关文献

参考文献15

  • 1Jure L, Andreas K, Carlos G,et al. Cost-ffective outbreakdetection in networks[ C]// Proceedings of the 13th ACMSIGKDD International Conference on Knowledge Discoveryand Data Mining. San Jose, CA, United States,2007:420-429.
  • 2Lee Chung-Hong,Chien Tzan-Feng,Yang Hsin-Chang. AnAutomatic Topic Ranking Approach for Event Detectionon Microblogging Messages [ C] //2011 IEEE InternationalConference on Systems, Man, and Cybernetics, SMC2011,Anchorage,AK ,United States,2011 :1358-1363.
  • 3朱恒民,苏新宁,张相斌.基于链接网络图的互联网舆情话题跟踪方法[J].情报学报,2011,30(12):1235-1241. 被引量:11
  • 4黄敏,胡学钢.基于复杂网络方法的舆情热点挖掘[J].计算机仿真,2011,28(9):114-117. 被引量:14
  • 5Yang Christopher C,Tobun Dorbin Ng. Analyzing andVisualizing Web Opinion Development and Social Interac-tions With Density-Based Clustering [ J]. IEEE Transac-tions on Systems, Man, and Cybernetics Part A: Systemsand Humans. 2011 ,41(6) :1144-1155.
  • 6Sousa D,Sarmento L,Rodrigues M. Characterization of theTwitter @ replies Network : Are User Ties Social or Topical[C]//2nd International Workshop on Search and MiningUser-Generated Contents, SMUC/ 10,Toronto, ON,Canada,2010:63-70.
  • 7王晓光.科学知识网络的形成与演化(Ⅱ):共词网络可视化与增长动力学[J].情报学报,2010,29(2):314-322. 被引量:52
  • 8Sahami M,Heilman T. A web-based kernel function formeasuring the similarity of short text snippets[C]//15thInternational Conference on World Wide Web, Edinburgh,Scotland,United Kingdom ,2006 :2-9.
  • 9Somnath B, Krishnan R, Ajay G. Clustering short textsusing Wikipedia [ C]//30th Annual International ACMSIGIR Conference on Research and Development inInformation Retrieval, Amsterdam, Netherlands, 2007 :787-788.
  • 10Callon M ,Courtial J P,Turner W A. From translations toproblematic networks : An introduction to co-word analysis[J]. Social Source Information,1983 ,22(2) : 191 -235.

二级参考文献67

共引文献89

同被引文献660

引证文献39

二级引证文献542

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部