期刊文献+

1981-2010年气候变化对青藏高原实际蒸散的影响 被引量:44

Impact of Climate Change on Actual Evapotranspiration on the Tibetan Plateau during 1981-2010
原文传递
导出
摘要 基于1981-2010年青藏高原80个气象台站观测数据,通过改进的LPJ动态植被模型,模拟并分析了青藏高原实际蒸散及其与降水的平衡关系(P-E)的时空变化。研究结果表明,在过去三十年来青藏高原气候呈现以变暖为主要特征的背景下,降水量整体略有增加,潜在蒸散呈减少趋势,特别是2000年以前减少趋势显著;青藏高原大部分地区实际蒸散呈增加趋势,P-E的变化趋势呈西北增加—东南减少的空间格局。大气水分蒸散发能力降低理论上会导致实际蒸散减少,而青藏高原大部分地区实际蒸散增加,主要影响因素是降水增加,实际蒸散呈增加(减少)趋势的区域中86%(73%)的降水增加(减少)。 To quantify the impact of climate change on the evapotranspiration process of alpine ecosystems on the Tibetan Plateau, we performed a series of simulations with the LPJ dynamic vegetation model and 80 meteorological stations from 1981 to 2010. Changes in actual evapotranspiration and the difference between precipitation and actual evapotranspiration (P-E) on the Tibetan Plateau were analyzed. Over the last 30 years, climate change was characterized by significantly increased temperature, slightly increased precipitation and decreased potential evapotranspiration which was significant before 2000. Actual evapotranspiration had increasing trends in most parts of the Tibetan Plateau, and P-E mainly had decreasing trends in southeastern plateau and increasing trends in northwestern plateau. Descending atmospheric water demand would lead to a decreasing trend in actual evapotranspiration; however, it increased in most regions due to more precipitation. Actual evapotranspiration increased (decreased) in most regions where there was 86% (73%) of increased (decreased) precipitation.
出处 《地理学报》 EI CSCD 北大核心 2012年第11期1471-1481,共11页 Acta Geographica Sinica
基金 中国科学院战略性先导科技专项(XDA05090304) 环境保护部公益性行业科研专项(201009056) 国家科技支撑项目(2009BAC61B05)~~
关键词 青藏高原 实际蒸散 潜在蒸散 动态植被模型 气候变化 Tibetan Plateau actual evapotranspiration potential evapotranspiration dynamic global vegetation model climate change
  • 相关文献

参考文献34

  • 1Nemani R R, White M A, Thornton Pet al. Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States. Geophysical Research Letters, 2002, 29(10), doi: 10.1029/2002GL014867.
  • 2Brutsaert W. Hydrology: An Introduction. New York: Cambridge University Press, 2005.
  • 3Jung M, Reichstein M, Ciais Pet al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 2010, 467(7318): 951-954.
  • 4Schimel D S, Braswell B H, Parton W J. Equilibration of the terrestrial water, nitrogen, and carbon cycles. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(16): 8280-8283.
  • 5Cox P M, Betts R A, Jones C D et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408(6809): 184-187.
  • 6Allen R G, Pereira L S, Howell T A et al. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 2011, 98(6): 899-920.
  • 7Wang K C, Dickinson R E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics, 2012, doi: 10.1029/2011RG000373.
  • 8刘春蓁.气候变化对陆地水循环影响研究的问题[J].地球科学进展,2004,19(1):115-119. 被引量:65
  • 9Roderick M L, Hobbins M T, Farquhar G D. Pan evaporation trends and the terrestrial water balance: II. Energy balance and interpretation. Geography Compass, 2009, 3(2): 761-780.
  • 10Brutsaert W, Parlange M B. Hydrologic cycle explains te evaporation paradox. Nature, 1998, 396(6706): 29-30.

二级参考文献96

共引文献997

同被引文献800

引证文献44

二级引证文献604

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部