期刊文献+

Reduction mechanisms of pyrite cinder-carbon composite pellets 被引量:3

Reduction mechanisms of pyrite cinder-carbon composite pellets
在线阅读 下载PDF
导出
摘要 The non-isothermal reduction mechanisms of pyrite cinder-carbon composite pellets were studied at laboratory scale under argon (Ar) atmosphere. The composite pellets as well as the specimens of separate layers containing pyrite cinder and coal were tested. The degree of reduction was measured by mass loss. The microstmctures of the reduced composite pellets were characterized by scanning electron mi- croscopy (SEM). It is found that the reduction processes of the composite pellets may be divided into four stages: reduction via CO and H2 from volatiles in coal at 673-973 K, reduction via H2 and C produced by cracking of hydrocarbon at 973-1123 K, direct reduction by carbon via gaseous intermediates at 1123-1323 K, and direct reduction by carbon at above 1323 K. Corresponding to the four stages, the apparent activation energies (E) for the reduction of the composite pellets are 86.26, 78.54, 72.01, and 203.65 kJ.mol-1, respectively. The non-isothermal reduction mechanisms of pyrite cinder-carbon composite pellets were studied at laboratory scale under argon (Ar) atmosphere. The composite pellets as well as the specimens of separate layers containing pyrite cinder and coal were tested. The degree of reduction was measured by mass loss. The microstmctures of the reduced composite pellets were characterized by scanning electron mi- croscopy (SEM). It is found that the reduction processes of the composite pellets may be divided into four stages: reduction via CO and H2 from volatiles in coal at 673-973 K, reduction via H2 and C produced by cracking of hydrocarbon at 973-1123 K, direct reduction by carbon via gaseous intermediates at 1123-1323 K, and direct reduction by carbon at above 1323 K. Corresponding to the four stages, the apparent activation energies (E) for the reduction of the composite pellets are 86.26, 78.54, 72.01, and 203.65 kJ.mol-1, respectively.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第11期986-991,共6页 矿物冶金与材料学报(英文版)
关键词 PYRITE ore pellets REDUCTION MICROSTRUCTURE activation energy pyrite ore pellets reduction microstructure activation energy
  • 相关文献

参考文献6

二级参考文献30

共引文献44

同被引文献9

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部