期刊文献+

转移概率部分未知的不确定Markov跳变系统的鲁棒镇定 被引量:1

Robust stabilization of a class of uncertain Markov jump linear systems with partly unknown transition probabilities
在线阅读 下载PDF
导出
摘要 本文研究的系统的转移概率中存在部分未知元素,通过充分考虑转移概率中元素之间的特性,得到了保证相应系统鲁棒指数可镇定的充分性条件,并以一组线性矩阵不等式给出。另外,本文提出的方法不需要知道转移概率中未知元素的任何信息,使结果具有更广的适用范围。仿真实例验证了文中方法的有效性。 The robust stabilization problem of a class of continuous-time uncertain Markov jump linear systems with partial unknown transition probabilities was investigated.In contrast with existing literature,in this study,a new system is propose,in which not all elements of the transition probabilities were assumed to be known.By fully considering the properties of the relationship between the transition probabilities,the sufficient conditions for robust exponential stabilization of the underlying systems were derived via linear matrix inequality formulation.Moreover,the proposed concept of partial unknown transition probabilities does not require any acknowledge of the unknown elements,thus,the results obtained by the system have a wide range of applications.Numerical examples illustrate the feasibility of the proposed system.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第6期1558-1562,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61074073 61034005) 新世纪优秀人才支持计划项目(NCET-10-0306)
关键词 自动控制技术 连续Markov跳变线性系统 转移概率部分未知 不确定参数 鲁棒指数镇定 线性矩阵不等式 automatic cont rol technology continuous-time Markov jump linear systems partly unknown transition probabilities uncertain parameters robust exponential stabilization linear matrix inequality
  • 相关文献

参考文献11

  • 1Zhang L, Boukas E K. Stability and stabilization ofMarkovian jump linear systems with partly unknowntransition probabilities [ J]. Automatical 2009,45(2):463-468.
  • 2Zhang L X,James L. Necessary and sufficient con-ditions for analysis and synthesis of Markov jumplinear systems with incomplete transition devscrip-tions [ J ]. IEEE Transactions On Automatic Con-trol, 2010, 55(7);1695-1701.
  • 3高明,盛立.连续Markov跳变奇异系统的稳定性分析与镇定[J].系统工程与电子技术,2011,33(1):157-161. 被引量:5
  • 4He S P,Liu F. Exponential stability for uncertainneutral systems with Markov jumps[J]. Journal ofControl Theory Application, 2009,7(1) -35-40.
  • 5刘健辰,章兢,张红强,何敏.时变时滞离散广义Markov跳变系统的鲁棒稳定性[J].控制与决策,2011,26(5):667-672. 被引量:7
  • 6Sathananthan S,Beanea C,Ladde G S,et al. Stabi-lization of stochastic systems under Markovianswitching[J]. Nonlinear Analysis: Hybrid Systems,2010, 4:804-817.
  • 7Ma S,Zhang C, Zhu S. Robust stability for discrete-time uncertain singular Markov jump systemswith actuator saturation [J]. IET Control TheoryApplication, 2011,5(2):255-262.
  • 8Farhadi A, Charalambous C D. Stability and reliabledata reconstruction of uncertain dynamic systemsover finite capacity channels[J]. Automatica,2010 ,46(5):889-896.
  • 9姚秀明,赵富,王常虹.一类离散Markov跳跃系统基于状态观测器的鲁棒H_∞控制[J].吉林大学学报(工学版),2010,40(1):136-142. 被引量:2
  • 10Costa O L V,Benites GRAM. Linear minimummean square filter for discrete-time linear systemswith Markov jumps and multiplicative noises [J].Automatica, 2011,47(3) :466-476.

二级参考文献66

  • 1Gu D W, Poon F W. A robust state observer scheme[J]. IEEE Transactions on Automatic Control,2001, 46(12) : 1958-1963.
  • 2Chen J D. Robust output dynamic observer-based control of uncertain time-delay systems[J].Chaos, Solitons and Fractals, 2007, 31(2): 391-403.
  • 3Lien C H, Yu K W. Non-fragile observer-based controls of dynamical systems via lmi optimization approach[J]. Chaos, Solitons and Fractals, 2007, 34(2) : 428-436.
  • 4Xu S Y, Chen T W, I.am J. Robust filtering for uncertain markovian jump systems with mode-dependent time-delays[J]. IEEE Transactions on Automatic Control, 2003, 48(5):900-907.
  • 5Cao Y Y, Lam J, Hu L S. Delay-dependent stochastic stability and analysis for time-delay systems with markovian iumping parameters[J]. Journal of the Franklin Institute, 2003, 340(6-7): 423-434.
  • 6Cao Y Y, Lain J. Stochastic stabilizability and control for discrete-time jump linear systems with time delay[J]. Journal of the Franklin Institute, 1999, 336(8) : 1263-1281.
  • 7Chen W H, Guan Z H, Yu P. Delay-dependent stability and control of uncertain discrete-time markovian jump systems with mode-dependent time delays[J]. Systems & Control Letters, 2004, 52(5): 361-376.
  • 8Boukas E K, Liu Z K. Robust control of discretetime markovian jump linear systems with mode-dependent time-delays[J]. IEEE Transactions on Automatic Control,2001, 46(12) : 1918-1924.
  • 9Moon Y S, Park P, Kwon W H, et al. Delay-dependent robust stabilization of uncertain state-delayed systems[J]. International Journal of Control, 2001,74(14) : 1447-1455.
  • 10Sun Y G, Wang L, Xie G M. Delay-dependent robust stability and control for uncertain discrete-time switched systems with mode-dependent time delays[J]. Applied Mathematics and Computation, 2007, 187(2):1228-1237.

共引文献14

同被引文献16

  • 1Arik S. Stability analysis of delayed neural networks [J]. IEEE Trans. on Circuits and Systems I:Fundarnental Theory and Applications, 2000, 47 (7) : 1089 - 1092.
  • 2CAO Ji-de, WANG Jun. Global asymptotic and robust stability of recurrent neural networks with time delays [J] IEEE Trans. on Circuits and Systems I: Regular Papers, 2005, 52 (2) :417 - 426.
  • 3DONG Jiu-xiang, YANG Guang-hong. Robust H2 control of continuous-time Markov jump linear systems [J]. Automatica, 2008, 44 (5) : 1431-1436.
  • 4WU Zheng-guang, SHI Peng, SU Hong-ye, CHU Jian. Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data [J] IEEE Trans. on Cybernetics, 2013, 43 (6) : 1796-1806.
  • 5ZHANG Yan, HE Yong, WU Min, ZHANG Jie. Stabilization for Markovian jump systems with partial information on transition probability based on free-connection weighting matrices [J], Automatica, 2011, 47: 79-84.
  • 6WANG Gang, YANG Dong-shen, ZHAO Qing-qi. Delay-dependent fuzzy hyperbolic model based on data-driven gumanteed cost conlml for a class of nonlinear continuous-time systems with uncertainties [J], Mathematical Problems in Engineering, 2012, 780740:1-17.
  • 7WANG Gang, ZHANG Hua-guang, CHEN Bin, et al. Fuzzy hyperbolic neural network with time-varying delays [J] . Fuzzy Sets and Systems, 2010, 161(19): 2533-2551.
  • 8MA Qian, XU Sheng-yuan, ZOU Yun. Stability and synchronization for Markovian jump neural networks with partly unknown transition probabilities [J].Neurocomputing, 20 1 1, 74: 3404-341 1.
  • 9LI Liang. Finite-time boundedness for a class of delayedMarkovian jumping neural networks with partly unknown transition probabilities [J], Abstract and Applied Analysis, 2014 : 1-8, Article ID 597298.
  • 10LIU Yu-rong, WANG Zi-dong, LIU Xiao-hui. Global exponential stability of generalized recurrent neural networks with discrete and distributed delays [J] .Neural Networks, 2006, 19(5):667-675.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部