期刊文献+

Spreading Speed for a Periodic Reaction-diffusion Model with Nonmonotone Birth Function

Spreading Speed for a Periodic Reaction-diffusion Model with Nonmonotone Birth Function
在线阅读 下载PDF
导出
摘要 A reaction-diffusion model for a single species with age structure and nonlocal reaction for periodic time t is derived. Some results about the model with monotone birth function are firstly introduced, and then by constructing two auxiliary equations and squeezing method, the spreading speed for the system with nonmonotone birth function is obtained. A reaction-diffusion model for cal reaction for periodic time is derived. a single species with age structure and nonloSome results about the model with monotone birth function are firstly introduced, and then by constructing two auxiliary equations and squeezing method, the spreading speed for the system with nonmonotone birth function is obtained.
机构地区 School of Mathematics
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期467-474,共8页 数学季刊(英文版)
基金 Supported by the NSF of China(11171120) Supported by the Doctoral Program of Higher Education of China(20094407110001) Supported by the NSF of Guangdong Province(10151063101000003)
关键词 spreading speed nonmonotone birth function period time age structure nonlocal reaction spreading speed nonmonotone birth function period time age structure nonlocal reaction
  • 相关文献

参考文献13

  • 1SO J, WU Jian-hong, ZOU Xing-fu. A reaction-diffusion model for a single species with age structure, I: travelling wavefronts on unbounded domains[J]. Proc R Soc Lond, 2001, 457A: 1841-1853.
  • 2WENG Pei-xuan, HUANG Hua-xiong, WU Jian-hong. Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction[J]. IMA J Appl Math, 2003, 68: 409-439.
  • 3JIN Yu, ZHAO Xiao-qing. Spatial dynamics of a nonlocal periodic reaction-diffusion model with stage structure[J]. SIAM J Math Anal, 2009, 40: 2496-2516.
  • 4JIN Yu, ZHAO Xiao-qing. Spatial dynamics of a periodic population model with dispersal[J]. Nonlinearity, 2009, 22: 1167-1189.
  • 5HSU S B, ZHAO Xiao-qing. Spreading speeds and traveling waves for nonmonotone integro difference equations[J]. SIAM J Math Anal, 2008, 40: 776-789.
  • 6FANG Jian, WEI Jun-jie, ZHAO Xiao-qiang. Spreading speeds and travelling waves for non-monotone tlme-delayed lattice equations[J]. Proc R Soc, 2010, 466A: 1919-1934.
  • 7FANG Jian, ZHAO Xiao-qiang. Existence and uniqueness of traveling waves for non-monotone integral equations with applications[J]. J Differential Equations, 2010, 248: 2199-2226.
  • 8MURRAY J D. Mathematical Biology[M]. New York: Springer-Verlag, 1993.
  • 9LIANG Xing, YI Ying-fei, ZHAO Xiao-qiang. Spreading speeds and traveling waves for periodic evolution systems[J]. J Differential Equations, 2006, 231: 57-77.
  • 10LIANG Xing, ZHAO Xiao-qiang. Asymptotic speeds for spread and traveling waves for monotone semiflows with Applications[J]. Comm Pure Appl Math, 2007, 60: 1-40. Erratum: Comm Pure Appl Math, 2008, 61: 137-138.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部