期刊文献+

一种改进的k-means聚类视觉词典构造方法 被引量:8

Improved k-means clustering method for codebook generation
在线阅读 下载PDF
导出
摘要 传统词袋(bag of words,BoW)模型在构造视觉词典时一般采用k-means聚类方法实现,但k-means聚类方法的性能在很大程度上依赖于初始点的选择,从而导致生成的视觉词典鲁棒性较差,此外,每次迭代都要计算数据点与中心点的距离,计算复杂度高。针对上述问题,提出了一种改进的k-means聚类视觉词典构造方法,该方法首先对初始值的选取进行了优化,克服了随机选取初始值对聚类性能的影响,其次基于三角形不等式对计算进行了简化,使生成的视觉词典更加稳定,计算复杂度更低,最后引入权值分布对图像进行基于视觉词典的表示,并将基于改进的视觉词典的词袋模型应用于图像分类,提高了分类性能。通过在Caltech 101和Caltech 256两个数据库进行实验,验证了本文方法的有效性,并分析了词典库大小对分类性能的影响。从实验结果可以看出,采用本文方法所得到的分类正确率提高了5%~8%。 Generally, the k-means clustering method is applied to generate the codebook in bag of word (BoW) model. However, the performance of the k-means clustering method greatly depends on the selection of original centers, which result in less robust codebook. Moreover, the distance between the center point and data point needs to be cal- culated in each iteration, which leads to high calculation complexity. Aiming at this problem, an improved k-means clustering method based on optimized selection of the original center is proposed, which overcomes the influence of randomly selected original center on clustering performance. Triangle inequality is used to simplify the calculation, which makes the generated codebook more robust and makes calculation less complex. At last, a weight contribution based codebook representation method is introduced and the BoW model based on the improved codebook is applied to image categorization, which improves the categorization result. The experiments on Caltech 101 and Caltech 256 databases were carried out, which proves the effectiveness of the proposed method. The effect of codebook size on categorization accuracy is analyzed. The results show that using the proposed method the categorization accuracy is improved by 5% to 8%.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第10期2380-2386,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61077079) 教育部博士点计划基金(20102304110013)资助项目
关键词 词袋模型 视觉词典构造 K-MEANS聚类 图像分类 bag of word(Bow) model codebook generation k-means clustering image categorization
  • 相关文献

参考文献12

二级参考文献79

  • 1张东波,王耀南.FCM聚类算法和粗糙集在医疗图像分割中的应用[J].仪器仪表学报,2006,27(12):1683-1687. 被引量:32
  • 2匡平,朱清新,陈旭东.基于FCM的快速模糊聚类算法研究[J].电子测量与仪器学报,2007,21(2):15-20. 被引量:9
  • 3张治国,刘怀亮,马志辉,张毅,赵娜.基于高层语义的视频检索研究[J].计算机工程与应用,2007,43(18):168-170. 被引量:9
  • 4张晖,董育宁.基于视频的车辆检测算法综述[J].南京邮电大学学报(自然科学版),2007,27(3):88-94. 被引量:25
  • 5Haken H. Synergetic Computers and Recognition-A Topdown Approach to Neural Nets [ M ]. Berlin: Springer-Verlag, 1991.
  • 6鄂大伟.多媒体基础与应用[M].北京:高等教育出版社,2001.
  • 7Osmar Rachid Zaiane. Resource and Knowledge Discovery from the Internet and Multimedia Repositories [ D ]. Simon Fraser University, 1999.
  • 8Kaufman L, Rousseeuw P J. Finding Groups in Data: An Introduction to Cluster Analysis[ M]. New York: John Wiley & Sons, 1990:23-42.
  • 9陈新泉.k-中心点轮换法及确定合适聚类数目的一种新方法[OL].中国科技论文在线,2006-03-02.
  • 10CHENG H D, JIANG X H, SUN Y, et al. Color image segmentation : advances and prospects [ J ]. Pattern Recognition, 2001, (34) :2259-2281.

共引文献85

同被引文献86

  • 1任喜伟,任工昌,杨帆.电磁场式油水界面测量分析及数据优化方法[J].化工自动化及仪表,2012,39(7):858-861. 被引量:8
  • 2付鹏,王宁玲,杨勇平,杨志平.多变边界火电机组能耗基准状态表征方法[J].工程热物理学报,2015,36(3):468-473. 被引量:7
  • 3张铫,王宝光,刘力双,李亚标.基于电容传感器的熔融金属液位检测系统[J].传感技术学报,2006,19(4):1049-1051. 被引量:3
  • 4洪军,崔彦锋,毕小龙,司风琪,徐治皋.机组在线运行优化系统及实时目标工况的确定[J].电力系统自动化,2007,31(6):86-90. 被引量:15
  • 5WANG X, WANG S. Collaborative signal processing for target tracking in distributed wireless sensor networks[J]. Journal of Parallel and Distributed Computing, 2007, 67(5) 501-515.
  • 6ZHENG S, XIE B, HUANG K, et al. Multi-view pede- strian recognition using shared dictionary learning with group sparsity [C]. Proceedings of the 18th International Conference on Neural Information Processing (ICONIP), 2011 : 629-638.
  • 7AKYILDIZ I F, MELODIA T, CHOWDHURY K R. A survey on wireless multimedia sensor networks [J]. Com- puter networks, 2007, 51 (4): 921-960.
  • 8YANG A Y, MAJI S, HONG K, et al. Distributed com-pression and fusion of nonnegative sparse signals for mul- tiple-view object recognition [C]. Information Fusion, 2009. FUSION'09. 12th International Conference on. IEEE, 2009: 1867-1874.
  • 9TAUBMAN D S, MARCELLIN M W, RABBANI M. JPEG2000: Image compression fundamentals, standards and practice [J]. Journal of Electronic Imaging, 2002, 11(2): 286-287.
  • 10SORO S, HEINZELMAN W. A survey of visual sensor networks [J]. Advances in Multimedia, 2009: 1-21.

引证文献8

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部