期刊文献+

主动学习在通信网络推荐系统中的应用 被引量:2

Application of active learning to recommender system in communication network
在线阅读 下载PDF
导出
摘要 稀疏网络中大量潜在链接的存在对于链接预测问题是一个很大的挑战。在链接预测任务中引入主动学习,挖掘网络中大量未连接节点对中的潜在信息,从未标记样本中挑选出系统最不确定的样本交由用户判别。获得标记后的样本将给系统较高的信息增益。在通信网络数据集Nodobo中的实验结果表明,使用主动学习之后,该方法为通信用户预测潜在联系人的准确率得到显著的提高。 The existence of potential links in sparse networks becomes a big challenge for link prediction.The paper introduced active learning into the link prediction task in order to mine the potential information of a large number of unconnected node pairs in networks.The most uncertain ones of the unlabeled examples to the system were selected and then labeled by the users.These examples would give the system a higher information gain.The experimental results in a real communication network dataset Nodobo show that the proposed method using active learning improves the accuracy of predicting potential contacts for communication users.
出处 《计算机应用》 CSCD 北大核心 2012年第11期3038-3041,共4页 journal of Computer Applications
基金 国家自然科学基金青年基金资助项目(61100135 61003040) 教育部归国留学人员启动基金资助项目(BJ210022) 南京邮电大学人才引进启动基金资助项目(NY209013)
关键词 链接预测 主动学习 推荐系统 社会网络分析 链接挖掘 link prediction active learning recommender system social network analysis link mining
  • 相关文献

参考文献15

  • 1GETOOR L, DIEHL C P. Link mining: A survey[ J]. ACM SIGKDD Explorations Newsletter, 2005, 7(2): 3 -12.
  • 2LIBEN-NOWELL D, KLEINBERG J. The link-prediction problem for social networks[ J]. Journal of the American Society for Information Science and Technology, 2007, 58(7) : 1019 - 1031.
  • 3陈可佳.社会网络分析中的机器学习技术综述[J].南京邮电大学学报(自然科学版),2011,31(3):83-89. 被引量:8
  • 4LICHTENWALTER R N, LUSSIER J T, CHAWLA N V. New perspectives and methods in link prediction[ C]// KDD' 10: Proceedings of the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010:243 -252.
  • 5COHN D, ATLAS L, LADNER R. Improving generalization with active learning[J]. Machine Learning, 1994, 15(2): 201-221.
  • 6HASAN M A, CHAOJI V, SALEM S, et al. Link prediction using supervised learning[ EB/OL]. [ 2012 - 03 - 18]. http://www, siam. org/meetings/sdm06/workproceed/Link% 20Analysis/12. pdf/.
  • 7SETYLES B. Active learning literature survey, Computer Sciences Technical Report 1648[ R]. Madison, Wisconsin, USA: University of Wisconsin-Madison, 2009.
  • 8BILGIC M, GETOOR L. Link-based active learning[ EB/OL]. [2012 -03 -15]. http://snap. stanford. edu/nipsgraphs2009/papers/bilgic-paper. pdf.
  • 9BILGIC M, MIHAKOVA L, GETOOR L. Active learning for networked data[ C]//ICML' 10: Proceedings of the 27th International Conference of Machine Learning. Haifa, Israel: Omnipress, 2010: 79 - 86.
  • 10LEWIS D D, CATLETT J. Heterogeneous uncertainty sampling for supervised learning[ C]//ICML' 94: Proceedings of the 11 th International Conference of Machine Learning. New Brunswick: OmniPress, 1994:148-156.

二级参考文献55

  • 1ZACHARY W W.An Information Flow Model for Conflict and Fission in Small Groups[J].Journal of Anthropological Research,1977,33:452-473.
  • 2ADAMIC L A,ADAR E.Friends and Neighbors on the Web[J].Social Networks,2003,23(3):211-230.
  • 3KOSSINETS G,WATIS D J.Empirical Analysis of an Evolving Social Network[J].Science,2006,311:88-90.
  • 4http://www.LiveJournal.com// Aboutus.
  • 5ADAMIC L A,GLANCE N.The Political Blogosphere and the 2004 US Election:Divided They Blog[C] // Proc of the International Workshop on Link Discovery.2005:36 -43.
  • 6AHN Y Y,HAN S,KWAK H,et al.Jeong.Analysis of Topological Characteristics of Huge Online Social Networking Services[C] //Proc of WWW.2007:835-844.
  • 7FURUKAWA T,DURRANT-WHYTE H F,LAVIS B.The ElementBased Method-Theory and its Application to Bayesian Search and Tracking[C] // Proc of IEEE/RSJ.San Diego,California,2007:2807-2812.
  • 8GOLDER S A,HUBERMAN B A.Usage Patterns of Collaborative Tagging Systems[J].Journal of Information Science,2006,32 (2):198-208.
  • 9BOYD D M,ELLISON N B.Social Network Sites:Definition,History,and Scholarship[J].Journal of Computer Mediated Communication,2008,13(1):210 -230.
  • 10KLEINBERG J M.Authoritative Sources in a Hyporlinked Environment[J].Journal of ACM,1999,46 (5):604-632.

共引文献7

同被引文献36

  • 1Liben-Nowell D, Kleinberg J. The link prediction problem for social networks [ J ]. Journal of the American Society for Infor- mation Science and Technology, 2007,58 ( 7 ) : 1019-1031.
  • 2Scellato S, Noulas A, Mascolo C. Exploiting place features in link prediction on location-based social networks[ C ]//Pro- ceedings of 17th ACM SIGKOD international conference on knowledge discovery and data mining. San Diego:ACM ,2011 : 1046 - 1054.
  • 3Cohen I, Cozman F G, Sebe N ,et al. Semi-supervised learning of classifiers:theory, algorithms, and their application to hu- man-computer interaction[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26 ( 12 ) : 1553 - 1566.
  • 4Getoor L,Diehl C P. Link mining:a survey[J]. ACM SIGKDD Explorations Newsletter,2005,7(2) :3-12.
  • 5Hasan M A, Chaoji V, Salem S, et al. Link prediction using su- pervised learning[ C ]//Proceedings of SDM workshop on link analysis, counterterrorism and security. [ s. 1. ] : [ s. n. ], 2006.
  • 6Eagle N, Pentland A, Lazer D. Inferring friendship network structure by using mobile phone data [ J ]. PNAS, 2009,106 (36) : 15274-15278.
  • 7Cho E, Myers S A, Leskovec J. Friendship and mobility:user movement in location-based social networks [ C ]//Proceed- ings of 17th ACM SIGKDD international conference on knowl- edge discovery and data mining. San Diego : ACM, 2011 : 1082 -1090.
  • 8Eagle N, Bettencourt L M A,de Montjoye Y. Community com- puting: comparisons between rural and urban societies using mobile phone data[ C]//Pruceedings of CSE'09. [s. 1. ]: [s. n. ] ,2009:144-150.
  • 9Nanavati A A, Singh R, Chakraborty D, et al. Analyzing the structure and evolution of massive telecom graphs [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2008,20 (5) :703-718.
  • 10Cranshaw J, Toch E, Hong J, et al. Bridging the gap between physical location and online social networks[ C ]//Proceedings of the 12th ACM international conference on ubiquitous com- puting. Copenhagen: ACM ,2010 : 119-128.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部