期刊文献+

一种基于联合CSVD-2DNMF的人脸识别算法

A Face Recognition Algorithm Based on Joint CSVD and 2DNMF
在线阅读 下载PDF
导出
摘要 类估计基空间奇异值分解算法(CSVD)克服了奇异值分解(SVD)造成的重构图像基空间不一致的本质缺陷,但在一定程度上削弱了图像的类别特征。二维非负矩阵分解算法(2DNMF)能在一定程度上避免NMF识别算法中因图像向量化而造成的结构信息丢失、内存花销大等不足,但是随着训练样本数量的增多,迭代速度慢、训练时间长等缺陷也将凸显。根据CSVD与2DNMF的优缺点,提出了人脸识别的联合CSVD-2DNMF算法,进而运用提出的算法在Matlab平台上对ORL人脸数据库中的人脸图像进行了识别实验。实验结果表明该算法能有效的缩短训练时间和提高识别率。 Although CSVD can eliminate the SVD-caused intrinsic defect that the basic spaces of reconstructed image are disagreed, the features of image classification are not impaired. Because of the image vectorization, the face recognition algorithm based on NMF will cause the lost of structure information and takes more memory. Al- though 2DNMF avoid these shortcomings caused by NMF, its own defect that the slow iterative convergence speed and the long training time will appear along with the increase of training samples. By combining the advantages and disadvantages of CSVD and 2DNMF, the joint CSVD-2DNMF face recognition algorithm is advanced. Experimental results from ORL face image database by using Matlab show that the efficiency of this advanced fusion method can shorten training time and improve recognition rates effectively.
出处 《科学技术与工程》 北大核心 2012年第29期7616-7620,共5页 Science Technology and Engineering
基金 航空基金(20112096016)资助
  • 相关文献

参考文献10

二级参考文献38

  • 1洪子泉,杨静宇.基于奇异值特征和统计模型的人像识别算法[J].计算机研究与发展,1994,31(3):60-65. 被引量:49
  • 2卢进军,杨杰,梁栋,常宇畴.基于非负矩阵分解的相关反馈图像检索算法[J].上海交通大学学报,2005,39(4):578-581. 被引量:9
  • 3何婧,冯国灿.奇异值分解在人脸识别中的应用[J].广东教育学院学报,2006,26(3):92-96. 被引量:5
  • 4高全学,梁彦,潘泉,陈玉春,张洪才.SVD用于人脸识别存在的问题及解决方法[J].中国图象图形学报,2006,11(12):1784-1791. 被引量:27
  • 5Guillamet D, Vitrih J. Non-negative Matrix Factorization for Face Recognition[C]//Proceedings of the 5th Catalonian Conference on AI. London, UK: Springer Link, 2002: 336-344.
  • 6Pan Quan, Zhang Mingui, Zhou Delong, et al. Face Recognition Based on Singular Value Feature Vectors[J]. Optical Engineering, 2003, 42(8): 2368-2374.
  • 7R Chellappa, C L Wilson, S Sirohey. Human and machine recognition of face a survey [ C ]. Proc IEEE, 1995,83 (5) :705 - 740.
  • 8Yang Jian, Yang Jingyu. From image vector to matrix: a straightforward image projection technique- IMPCA vs. PCA[ J]. Pattern Recognition, 2002,35 : 1997 - 1999.
  • 9Zhang Daoqiang, Chert Songcan and Zhou Zhi - Hua. Two - dimensional non - negative matrix factorization for face representation and recognition[ C]. In: Proceedings of the ICCV'05 Workshop on Analysis and Modeling of Faces and Gestures ( AMFG'05 ), Beijing, China, LNCS 3723:350-363, 2005.
  • 10D D Lee, H S Seung. Learning the parts of objects by non - negative matrix factorization[ J].Nature, 401, 1999. 788 -791.

共引文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部