期刊文献+

关于正整数有序分拆的一些恒等式和n-colour有序分拆的两个组合性质 被引量:3

Some identities are relative to compositions and two combinatorial properties of n-colour compositions
在线阅读 下载PDF
导出
摘要 研究了正整数的无序分拆与有序分拆的关系.给出了正整数的无序分拆与有序分拆的一些恒等式.并且利用菲波拉契数与正整数n分拆成不含分部量1的有序分拆数的关系给出了n-colour有序分拆的两个组合性质. This paper discusses some relations between partitions and compositions of integers. As main results, some identities between partitions and compositions are obtained. Further, two combinatorial properties of the n-colour compositions, involving Fibonacci numbers and the number of compositions of n in with no part 1 appearing, are also presented.
作者 郭育红
机构地区 河西学院数学系
出处 《纯粹数学与应用数学》 CSCD 2012年第5期590-594,613,共6页 Pure and Applied Mathematics
基金 甘肃省高等学校研究生导师科研项目(200809-04) 河西学院校长基金(XZ2011-01)
关键词 分拆恒等式 n—colour有序分拆 组合性质 菲波拉契数 partitions identity, n-colour compositions, combinatorial property, Fibonacci number
  • 相关文献

参考文献3

二级参考文献23

  • 1郭育红.与正整数的无序分拆和有序分拆相关的一些恒等式[J].数学学报(中文版),2007,50(3):707-710. 被引量:16
  • 2MacMahon P. A., Memoir on the compositions of numbers, Philos, Trans. Roy. Soc. London A, 1894, 184: 835-901.
  • 3Alladi K., A Variation on a theme of Sylvester-a smoother road to Gollniz (Big) theorem, Discrete Math., 1999, 196: 1-11.
  • 4Andrews G. E., Ramanujan's "lost" notebook IV: stacks and alternating partitions, Adv. in Math., 1984, 53: 55-74.
  • 5Andrews G. E., The theory of partitions, Encyclopedia of Mathematics and Its Applications, 1976, Vol. 2, Reading.
  • 6Agarwal A. K., An analogue of Euler's identity and new combinatorial properties of n-colour compositions, J. Computational and Applied Mathematics, 2003, 160: 9-15.
  • 7Guo Y. H., Some identities between partitions and compositions, Acta Mathematica Sinica, Chinese Series, 2007, 50(3): 707-710.
  • 8Richard P. S., Enumerative Combinatorics Vol.1, Cambridge: Cambridge University Press, 1997
  • 9曹汝成.组合数学[M].广州:华南理工大学出版社,1999.
  • 10MACMAHON P A. Memoir on the compositions of numbers[J]. Philos, Trans Roy Soc London A, 1894, 184: 835 - 901.

共引文献18

同被引文献12

  • 1郭育红.与正整数的无序分拆和有序分拆相关的一些恒等式[J].数学学报(中文版),2007,50(3):707-710. 被引量:16
  • 2MacMahon P A. Combinatory Analysis [M]. Cambridge: Cambridge University Press, 1915.
  • 3Andrews G E. The Theory of Partitions [M]. Cambridge: Cambridge University Press, 1984.
  • 4Munagi A O. Primary classes of compositions of numbers [J]. Ann. Math. Inform., 2013,41:193-204.
  • 5Munagi A O. Zig-Zag graphs and partitions identities of A K Agarwal [J]. Ann. Comb., 2015,19:557-566.
  • 6Ilvia Heubach, Toufik Mansour. Combinatorics of Compositions and Words [M]. Boca Raton: CRC Press 2010.
  • 7Andrew V, Sills. Compositions, partitions and fibonacci numbers [J]. Fibonacci Quart., 2011,49(4):348-354.
  • 8Hoggatt V E, Bicknell M. Palindromic composition [J]. Fibonacci Quart., 1975,13:350-356.
  • 9郭育红,晏兴学.关于正整数奇偶分拆数的计算问题[J].纯粹数学与应用数学,2008,24(3):525-528. 被引量:5
  • 10郭育红.关于自反的n-colour有序分拆的一个关系式[J].武汉大学学报(理学版),2012,58(5):430-432. 被引量:4

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部