期刊文献+

低温分离、富集冶金粉尘中的Zn 被引量:13

Separating and enriching zinc from metallurgical dust at low temperature
在线阅读 下载PDF
导出
摘要 系统地研究国内多家钢铁企业粉尘的基础特性,开发出一种低温分离、富集冶金粉尘中Zn等金属元素的新工艺。基于ZnO超细粉的还原挥发热力学分析和动力学实验,进行了粉尘的非熔态还原及Zn的回收、富集研究。结果表明:使用高纯度CO或H2为还原剂,在800-900℃可实现粉尘中ZnO(s)-Zn(g)的转变,气化脱Zn率可达99%;收集到的气态还原产物经水洗去除掉K、Cl等元素后,富集成含zn量可达90%的富Zn物料。同时,较低的温度使得粉尘于非熔融状态下还原,固态还原产物中Fe的金属化率可达90%,可直接经物理分离获得固态高纯铁。 The characteristics of dust obtained from different steelmaking enterprises were systematically studied. A new process for separating and enriching zinc from metallurgical dust at low temperature was developed. Based on the volatilized thermodynamics analysis and dynamics reduction experiment of pure ultra-fine ZnO, the experimental study on non-molten reduction and recovery and enrichment of zinc in dusts was carded out. The results show that zinc oxide is reduced to metallic zinc, using high-purity CO or H2 as the reducing agent at 800-900 ℃, and the de-zincing rate is over 99%. The collected gaseous reduction products are washed to get rid of K, C1 and other elements, then the enrichment, called Zn-rich material, is obtained with the content of Zn up to 90%. At the same time, the dusts are reduced at the state of non-molten because of low temperature, and the metallization of Fe in product of solid-state reduction is as high as 90%. Furthermore, the solid-state high-purity iron can be directly separated physically.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2012年第9期2692-2698,共7页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(51074025) 中央高校基本科研业务费专项资金资助项目(FRF-SD-12-009A)
关键词 冶金粉尘 非熔态还原 Zn富集 metallurgical dust reduction at non-molten state enrichment of zinc
  • 相关文献

参考文献16

  • 1王东彦,王文忠,陈伟庆,周荣章.转炉和含锌铅高炉尘泥的物性和物相分析[J].中国有色金属学报,1998,8(1):135-139. 被引量:14
  • 2TAHIR S, ALENKA R M, STEFICA C S, VJERA N R,MONIKA J,MLOE R. Characterization of steel mill electric arcfurnace dust [J]. Journal of Hazardous Materials, 2004,109(1/3):59-70.
  • 3NEGRO P, PETIT C, URVOY A, SERT D, PIERRET H.Characterization of the permeability of the blast furnace lowerpart [J]. Revue de Metallurgie-Cahiers D'InformationsTechniques, 2001,98(6): 521-532.
  • 4WANG K S, CHIANG K Y, TSAI C C, SUN C J, TSAI C C,LIN K L. The effects of FeCl3 on the distribution of the heavymetals Cd, Cu, Cr, and Zn in a simulated multimetal incinerationsystem [J]. Environmental International, 2001, 26(4): 257-263.
  • 5HAFEZ A I, ELMANHARAWY M S’ ABDEL FATTAH M A.Chemical treatment of the water used in the blast furnace gascleaning cycle in the Egyptian iron and steel company [J].International Journal of Environment and Pollution, 2002, 18(4):359-371.
  • 6黄志华,伍喜庆,彭冠兰.高炉尘泥化学除锌[J].中国有色金属学报,2007,17(7):1207-1212. 被引量:13
  • 7DUTRA AJB, PAIVA PRP, TAVARES L M. Alkaline leachingof zinc from electric arc furnace steel dust [J]. MineralsEngineering, 2006,19(5): 478-485.
  • 8HERCK P V’ VANDECASTEELE C, SWENNEN R, MORTIERR. Zinc and lead removal from blast furnace sludge with ahydrometallurgical process [J]. Environmental Science andTechnology, 2000, 34(17): 3802-3808.
  • 9PALENCIA I, ROMERO R, IGLESIAS N, CARRANZA F.Recycling EAF dust leaching residue to the furnace: Asimulation study [J]. JOM-Journal of the Minerals Metals &Materials Society, 1999, 51(8): 28-32.
  • 10RUIZ O’ CLEMENTE C,ALONSO M, ALGUACIL F J.Recycling of an electric arc furnace flue dust to obtain highgrade ZnO [J]. Journal of Hazardous Materials, 2007,141(1):33-36.

二级参考文献38

共引文献34

同被引文献121

引证文献13

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部