期刊文献+

利用ALOS PALSAR双极化数据估测山区森林蓄积量模型 被引量:5

Estimating forest volume in hilly regions with the ALOS PALSAR model's dual polarization data
在线阅读 下载PDF
导出
摘要 合成孔径雷达(SAR)技术以其独特的成像机制及其全天候、全天时成像能力,在森林生物量估测方面发挥着越来越重要的作用。利用野外实测数据分析了ALOS PALSAR双极化数据后向散射系数(σH0H,σH0V,σH0V/HH)与云南山区松林蓄积量的关系,并分别构建简单线性、自然指数和加入地理因子的多元回归模型。研究结果表明:极化比值(σH0V/HH)与蓄积量的相关系数(r=-0.407)比任何单极化(σH0H和σH0V分别为0.204和-0.242)都要高,加入地理因子的多元回归模型在森林蓄积量估算中有较好的精度。 Synthetic Aperture Radar (SAR), having a particular imaging mechanism that can acquire data at any time, has become more and more important for estimating forest biomass. In this research, based on field sur- vey data, correlations between ALOS PALSAR dual polarization data backscattering coefficients (σ0HH σ0Hv and σ0v/HH. ) and Yunnan pine forest volume from hilly regions were analyzed. A simple linear model, an exponential model, and a multiple regression model with terrain factors were developed. Results showed that correlation of 0 the polarization ratio (σ0v/H.) to forest volume (r = -0.407) was higher than any single polarization (O'OH with r = 0.204 and σ0Hv with r = -0.242). Also, the multiple regression model with terrain factors was with highest ac curacy. [Ch, 3 fig. 2 tab. 12 ref.]
出处 《浙江农林大学学报》 CAS CSCD 北大核心 2012年第5期667-670,共4页 Journal of Zhejiang A&F University
基金 国家自然科学基金资助项目(30960302)
关键词 森林测计学 ALOS PALSAR 森林蓄积量 地理因子 forest mensuration ALOS PALSAR forest volume geographical factors
  • 相关文献

参考文献12

  • 1RAUSTE Y. Multi-temporal JERS SAR data in boreal forest biomass mapping[J].Remote Sensing of Environment,2005.263-275.
  • 2杨永恬,李增元,陈尔学,凌飞龙.基于ALOS PALSAR数据的森林蓄积量估测技术研究[J].林业资源管理,2010(1):113-117. 被引量:16
  • 3朱海珍,庞勇,杨飞,李艳华.基于ENVISAT ASAR数据的森林蓄积量估测研究[J].地理与地理信息科学,2007,23(2):51-55. 被引量:22
  • 4DENGSHENG L. The potential and challenge of remote sensing-based biomass estimation[J].International Journal of Remote Sensing,2006,(07):1297-1328.
  • 5LUCAS R,ARMSTON J,FAIRFAX R. An evaluation of the ALOS PALSAR L-band backscatter-above ground biomass relationship Queensland,Anstralia:impacts of surface moisture condition and vegetation structure[J].IEEE J Sel Top Appl Earth Obs & Geosci Rem Sens,2010,(04):576-593.
  • 6TANSEY K J,LUCKMAN A J,SKINER L. Classification of forest volume resources using ERS tandem coherence and JERS backscatter data[J].International Journal of Remote Sensing,2004,(04):751-768.doi:10.1080/0143116031000149970.
  • 7SANTORO M,ERIKSSON L,ASKNE J. Assessment of stand-wise stem volume retrieval in boreal forest from JERS-1 L-band SAR backscatter[J].International Journal of Remote Sensing,2006,(16):3425-3454.
  • 8FRANSSON J E,ISRAELSSON H. Estimation of stem volume in boreal forests using ERS-1 C-and JERS-1 L-band SAR data[J].International Journal of Remote Sensing,1999,(01):123-137.doi:10.1080/014311699213640.
  • 9范凤云;陈尔学;李世明.ALOS PALSAR极化数据对山区森林蓄积量的敏感性评价[A]北京:中国林业出版社,2009211-216.
  • 10宋茜,范文义.大兴安岭植被生物量的ALOS PALSAR估算[J].应用生态学报,2011,22(2):303-308. 被引量:14

二级参考文献35

共引文献43

同被引文献118

引证文献5

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部