期刊文献+

一种基于决策粗糙集的两步分类算法

在线阅读 下载PDF
导出
摘要 本文介绍了粗糙集和决策粗糙集理论,提出一种基于决策粗糙集理论的两步信息过滤算法,相比原始的此类算法,该算法缩小了负域范围,采取两步策略进行分类,当发现新样本和未知样本时,能确保它是否属于负域,从而尽量减少将不属于负域的样本划分到负域,降低了分类错误和损耗。与传统朴素贝叶斯方法和一般决策粗糙集理论算法比较结果证明,本文提出的基于决策糙集的两步信息过滤算法,可以提高分类精度和降低分类损耗。
作者 朱灿伟
出处 《中国新通信》 2012年第20期72-73,共2页 China New Telecommunications
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部