期刊文献+

混合分数布朗运动下一类欧式回望期权定价 被引量:6

A kind European lookback option pricing model in mixed fractional Brownian motion environment
原文传递
导出
摘要 利用Itó公式获得了混合分数布朗运动环境下的价格模型,并确定了回望期权价格所满足的随机微分方程,深入研究了欧式浮动履约价的定价模型,证明了欧式浮动履约价的看涨回望期权和看跌回望期权定价公式。 The price model under the Ito formula for mixed fractional Brownian motion was proposed. Then the stochastic differential equation for mixed fractional Brownian motion was obtained by the price model, which meets the pricing model for the European floating strike price of the lookback option. The pricing formulas of floating strike lookback call option and lookback put option were proved.
作者 杨朝强
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2012年第9期105-109,共5页 Journal of Shandong University(Natural Science)
关键词 混合分数布朗运动 欧式回望期权 Itó公式 定价模型 mixed fractional Brownian motion European lookback option It6 formula pricing model
  • 相关文献

参考文献7

  • 1YUE KUEN KWOK. Mathematical models of financial derivatives [ M]. 2nd ed. Berlin: Springer, 2008: 202-207.
  • 2ROBERT J ELLIOTr, P EKKEHARD KOPP. Mathematics of financial markets [M ]. 2nd ed. Berlin .. Springer, 2010 : 167- 217.
  • 3孙玉东,师义民.混合分数布朗运动下亚式期权定价[J].经济数学,2011,28(1):49-51. 被引量:17
  • 4林建华,王福昌,冯敬海.股价波动的指数O-U过程模型[J].经济数学,2000,17(4):29-32. 被引量:43
  • 5桑利恒,杜雪樵.分数布朗运动下的回望期权定价[J].合肥工业大学学报(自然科学版),2010,33(5):797-800. 被引量:11
  • 6BENDER C. An Ito formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter[J]. Sto- chastic Processes and Their Applications, 2003, 104: 81-106.
  • 7STEVEN E SHREVE. Stochastic calculus for financelI continuous-time models[ M]. 2nd ed. Berlin: Springer, 2010:308-314.

二级参考文献13

共引文献68

同被引文献45

  • 1霍海峰,温鲜,邓国和.分数次布朗运动的欧式障碍期权定价[J].经济数学,2009,26(4):97-103. 被引量:12
  • 2杜雪樵,丁华.有限差分法在复合期权定价中的应用[J].合肥工业大学学报(自然科学版),2007,30(1):121-124. 被引量:2
  • 3Cheridito P. Regularizing Fractional Brownian Motion with a View towards Stock Pric Modelling[ D]. Zurich :Swiss Federal In- stitute of Technology Zurich, 2001.
  • 4Bender C, Sottine T, Valkeila E. Arbitrage with fractional Brownian motion [ J ]. Theory of Stochastic Processes,2006,12 (3) : 1- 12.
  • 5Bender C, Sottine T, Valkeila E. Pricing by hedging and absence of regular arbitrage beyond semi mtmingales[ J]. Finance and Stochastics, 2008, 12(4) :441 - 468.
  • 6RONG Yue-tang,ZHANG Lu. The Pricing Formula for Coupon-Bonds Option with Delay in Delivery in Fractional Brownian Mo- tion Environment[ C]//2012 3rd International Conference on E-Business and E-Government. Shanghai: the IEEE Inc,2012. 2256 - 2260.
  • 7BENDER C. An Ito formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter [J].Stochastic Processes and Their Applications, 2003, 104 : 81-106.
  • 8KWOK Yue-Kuen. Mathematical models of financial derivatives [M]. 2nd ed. Berlin: Springer, 2008.
  • 9Robert J Elliott, Ekkehard Kopp P. Mathematics of financial markets [ M]. 2nd ed. Berlin: Springer, 2010:185-221.
  • 10Steven E Shreve. Stochastic calculus for financeii continuous-time models [ M]. 2nd ed. Berlin: Springer, 2010: 308-320.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部