摘要
In this work,the microstructure and optical properties of the Mo/Si multilayers mirror for the space extreme-ultraviolet solar telescope before and after 100 keV proton irradiation have been investigated.EUV/soft X-ray reflectometer(EXRR) results showed that,after proton irradiation,the reflectivity of the Mo/Si multilayer decreased from 12.20% to 8.34% and the center wavelength revealed red shift of 0.38 nm,as compared with those before proton irradiation.High-resolution transmission electron microscopy(HRTEM) observations revealed the presence of MoSi 2,Mo 3 Si and Mo 5 Si 3 in Mo-on-Si interlayers before irradiation.The preferred orientation such as MoSi 2 with(101) texture and Mo 5 Si 3 with(310) texture was formed in Mo-on-Si interlayers after proton irradiation,which led to the increase of thickness in the interlayers.It is suggested that the changes of microstructures in Mo/Si multilayers under proton irradiation could cause optical properties degradation.
In this work, the microstructure and optical properties of the Mo/Si multilayers mirror for the space extreme-ultraviolet solar telescope before and after 100 keV proton irradiation have been investigated. EUV/soft X-ray reflectometer (EXRR) results showed that, after proton irradiation, the reflectivity of the Mo/Si multilayer decreased from 12.20% to 8.34% and the center wavelength revealed red shift of 0.38 nm, as compared with those before proton irradiation. High-resolution transmission electron microscopy (HRTEM) observations revealed the presence of MoSi2, Mo3Si and Mo5Si3 in Mo-on-Si interlayers before irradiation. The preferred orientation such as MoSi2 with (101) texture and Mo5Si3 with (310) texture was formed in Mo-on-Si interlayers after proton irradiation, which led to the increase of thickness in the interlayers. It is suggested that the changes of microstructures in Mo/Si multilayers under proton irradiation could cause optical properties degradation.
基金
supported by the National Natural Science Foundation of China (Grant No. 50671042)
the Open Project of State Key Laboratory of Applied Optics (Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences) (Grant No. 201004)
the Ph.D.Innovation Programs Foundation of Jiangsu Province (Grant No.CXZZ12_0671)