期刊文献+

PSO-SVM算法在肝脏B超图像识别中的应用 被引量:4

Application of PSO-SVM Algorithm in Liver B Ultrasound Images Recognition
在线阅读 下载PDF
导出
摘要 为提高肝脏B超图像的诊断准确率,研究了将粒子群算法(Particle Swarm Optimization,PSO)和支持向量机(Support Vec-tor Machine,SVM)相结合进行肝脏B超图像识别的方法;该方法首先提取肝脏B超图像的空域和频域的纹理特征,然后运用SVM对108幅肝脏B超图像进行分类,利用PSO算法优化SVM的模型参数,最后将该方法与基于网格搜索法优化的SVM和基于BP神经网络的分类方法进行了对比;实验结果表明,在PSO-SVM算法下,所提取的两种纹理特征相结合能够有效地描述肝脏B超图像,基于粒子群优化算法的支持向量机模型具有较高的识别精度,平均分类准确率达94.44%,这就表明PSO-SVM算法适用于对肝脏B超图像的识别。 To improve the diagnostic accuracy of liver B ultrasound images, an approach was proposed based on Particle Swarm Optimi- zation (PSO) and Support Vector Machine (SVM). First, texture features of spatial and frequency domains were extracted from liver B ul trasound images. Then, SVM was used to conduct the classification of 108 liver B ultrasound images. And PSO algorithm was used to opti- mize the model parameters. Last, the proposed method was compared with that SVM based on grid search method and BP neural network. Experimental results show, in the PSO-SVM algorithm, the combination of two texture features that extracted can effectively describe liver B ultrasound images. And SVM model based on PSO has higher recognition accuracy with its average accuracy up to 94.44 %, which con- firmed PSO-SVM algorithm is suitable for the recognition of liver B ultrasound images.
出处 《计算机测量与控制》 CSCD 北大核心 2012年第9期2491-2493,2500,共4页 Computer Measurement &Control
关键词 支持向量机 粒子群优化算法 灰度共生矩阵 小波变换 support vector machine particle swarm optimization gray level concurrence matrix wavelet transform
  • 相关文献

参考文献11

二级参考文献45

共引文献457

同被引文献28

  • 1张兢,路彦和,雷刚.基于多传感器数据融合的智能火灾预警系统[J].计算机工程与应用,2006,42(6):206-208. 被引量:19
  • 2胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:340
  • 3Cortes C, Vapnik V. Support-vector networks[J]. Ma- chine Learning, 1995, 20 (3)I 273-297.
  • 4Cristianini N, Shawe - Taylor J. An Introduction to Support Vector Machines and Other Kernel - Based Learning Methods [M]. London: Cambridge University Press, 2000.
  • 5Osuna E, Freund R, Girosi F. Training support vector ma- chines: An application to face deteetion [C] ffProeeedings of CVPRr97 Puerto Rico. San Juan: IEEE Computer Society, 1997.
  • 6Truong T X. Fire flame detection in video sequences using multi-stage pattern recognition techniques [J], Engineering Applicationsof Artificial Intelligence, 2012,25 (7) : 1365 - 1372.
  • 7Ko,Byoung Chul’ Fire detection based on vision sensor and sup-port vector machines [J]. Fire Safety Journal? 2009, 44 (3):322 - 329.
  • 8Chen Yongqi. LS _ SVM Parameters Selection Based on HybridComplex Particle Swarm Optimization [ J ]. Energy Procedia,2012. 17<A): 706 - 710;.
  • 9Hui ling Chena. Towards an optimal support vector machine classi-fier using a parallel particle swarm optimization strategy [J]. Ap-plied Mathematics and Computation, 2014,239: 180 - 197.
  • 10王娜,吴希军,徐凤荣,郑德忠.火灾探测的模糊神经网络数据融合算法研究[J].燕山大学学报,2008,32(2):120-123. 被引量:5

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部