摘要
图G的正常边染色f满足相邻点的色集合相不互包含时,该染色称为图G的Smarandcchely-邻点可区别边染色,其中S(x)={f(xω)|xω∈E(G)}称之为在f下的顶点x的色集合.该染色称为图G的Smarandchely-邻点可区别边染色.对图G进行的.Smarandchely-邻点可区别边染色所用最少颜色数称为图G的Smarandachely-邻点可区别边色数.讨论了P_m□P_n的Smarandchely-邻点可区别边色数.
A proper edge coloring f of graphs G would be the Smarandachely adjacentvertex distinguishing edge coloring ,if the set of colors of the adjacent-vertex are not included each,where LetS(x) = {f(xw)lxw E E(G)} denote the set of colors assigned to edges incident to the vertex x.The minimum number of colors is called the Smarandachely adjacent-vertex distinguishing edge chromatic number of G. In this paper, the Smarandachely adjacent-vertex distinguishing edge chromatic number of Pm□Pn is obtained.
出处
《数学的实践与认识》
CSCD
北大核心
2012年第17期216-221,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(61163037)
陕西省教育厅专项科研项目基金(11JK0508)
宁夏大学科学研究基金项目((E):ndzr10-7)