期刊文献+

并网光伏电站置信容量评估 被引量:24

Capacity Credit Evaluation of Grid-Connected Photovoltaic Generation
在线阅读 下载PDF
导出
摘要 衡量光伏发电的置信容量是大规模光伏电站接入电网时需要考虑的问题之一。以光伏发电接入后系统可以减少的发电容量来评估光伏发电的置信容量,建立了考虑不同天气类型概率、最大辐射强度、云遮波动以及温度系数波动的年光伏出力波动模型。提出了基于序贯蒙特卡罗仿真的电力系统发电可靠性的计算方法,并以光伏发电接入前后的系统电力不足期望(loss of load expectation,LOLE)为基础,建立了目标函数,并用粒子群优化算法搜索光伏发电接入后系统的常规机组组合,使系统的可靠性水平与光伏发电接入前保持一致。某标准算例的仿真计算验证了上述模型和方法的正确性和有效性。 To evaluate the capacity credit of photovoltaic(PV) generation is one of urgent problems to be considered when large-scale PV station is connected to traditional power grid.The capacity credit of PV generation is evaluated by the generation capacity that could be reduced in traditional power grid after the grid-connection of PV station.For this purpose,a new method for evaluating the capacity credit of PV generation is proposed.Firstly,an annual output fluctuating model of PV generation,in which the occurrence probabilities of different weather types,the maximum proportions of solar radiation under various whether conditions,the fluctuation radiation range due to clouds mask and the temperature coefficient random variation range are taken into account,is built;secondly,based on sequential Monte-Carlo simulation,a method to calculate generation reliability of power grid is put forward and its objective function is established based on the loss of load expectation(LOLE) before and after the grid-connection of PV station,and then the particle swarm optimization is utilized to search optimal combination of traditional generation sets to make the generation reliability level of power grid conforming with that before the grid-connection of PV station.Both correctness and effectiveness of the proposed model and algorithm are verified by simulation results of IEEE-RTS79 system.
出处 《电网技术》 EI CSCD 北大核心 2012年第9期31-35,共5页 Power System Technology
关键词 光伏发电 容量置信度 发电可靠性 序贯蒙特卡罗法 粒子群优化 photovoltaic (PV) capacity credit generationreliability sequential Monte-Carlo particle swarm optimization
  • 相关文献

参考文献17

  • 1Peter M. A study of very large solar desert systems with therequirements and benefits to those nations having high solar irradiation potential[R]. UK: lobal Energy Network Institute Report, 2006.
  • 2中华人民共和国国家发展和改革委员会.可再生能源中长期发展规划[R].北京:中华人民共和国国家发展和改革委员会,2007.
  • 3Kevin P. Review of International Experience Integrating Variable Renewable EnergyGeneration[R]. Columbia: PIER, 2008.
  • 4Garver L L. Effective load carrying capability of generating units[J]. IEEE Trans Power Application Systems, 1966, 85(8): 910-919.
  • 5John H, Mark D. The capacity credit of wind power: a theoretical analysis[J]. Solar Energy, 1981(26)391-401.
  • 6Kennedy J, Eberhart R. Particle swarm optimizatinn[C]//IEEE Proceedings of the International Conference on Neural Networks. Perth, Australia: IEEE, 1995: 15-20.
  • 7金义雄,程浩忠,严健勇,张丽.改进粒子群算法及其在输电网规划中的应用[J].中国电机工程学报,2005,25(4):46-50. 被引量:90
  • 8Trishan E, Patrick L C. Comparison ofphotovoltaic array maximum power point tracking techniques[J]. IEEE Trans on Energy Conversion, 2006: 885-89.
  • 9焦阳,宋强,刘文华.光伏电池实用仿真模型及光伏发电系统仿真[J].电网技术,2010,34(11):198-202. 被引量:154
  • 10陈昌松,段善旭,殷进军.基于神经网络的光伏阵列发电预测模型的设计[J].电工技术学报,2009,24(9):153-158. 被引量:220

二级参考文献122

共引文献881

同被引文献246

引证文献24

二级引证文献343

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部