期刊文献+

多环芳烃的表面增强拉曼光谱探测与分析 被引量:21

Detection and Analysis of Polycyclic Aromatic Hydrocarbons Using Surface-Enhanced Raman Spectroscopy
在线阅读 下载PDF
导出
摘要 首次实现了以参数优化的金溶胶为表面增强拉曼散射(SERS)活性基底探测水中痕量的多环芳烃。采用化学还原法制备不同颗粒大小的金溶胶,实验确定了632.8nm激发光下的最优金纳米颗粒的平均粒径为(32±3)nm,并以此金溶胶为基底,探索pH值对多环芳烃增强效果的影响,发现pH=13效果最佳,与pH=6相比谱线绝对强度提高约20倍。以粒径为(32±3)nm,pH=13的金溶胶为活性基底对不同浓度萘、菲、芘溶液进行了SERS光谱探测,探测到的最低浓度分别为20,4和4nmol·L-1,特征峰强与浓度呈线性关系,线性拟合相关系数均在0.985以上,三者混合溶液的SERS光谱可清晰分辨出各自的特征峰。结果表明,该实验所采用的SERS活性基底灵敏度较高,具有广阔的应用前景。 In the present paper,the gold colloid with parameters optimized was used as surface-enhanced Raman scattering(SERS) active substrate to realize the trace detection of polycyclic aromatic hydrocarbons(PAHs) in water for the first time.Gold colloids with different size were prepared using chemical reduction method,and the optimum size selected at 632.8 nm excitation wavelength by experiment is(32±3) nm.The influence of pH value on the enhancement of PAHs was researched,and the optimal pH value is 13.Spectral intensity increased by approximately 20-fold compared with pH 6.The SERS spectra of naphthalene,phenanthrene and pyrene aqueous solutions were detected by the optimum gold colloid,and the minimum concentrations obtained were 20,4 and 4nmol·L-1,respectively.There was a linear relationship between peak intensity and concentration,and the linear regression correlation coefficients were all above 0.985.For the mixture,the authors could distinguish each PAH easily for their own characteristic peaks.The experimental results show that such active substrate has a very high sensitivity as well as good application prospect.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第9期2452-2457,共6页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(40906051) 国家高技术研究发展计划"863"项目(2006AA09Z243) 山东省自然科学青年基金项目(ZR2011DQ010) 中国海洋大学中央高校基本科研业务费青年教师专项基金项目(201113010)资助
关键词 表面增强拉曼光谱 多环芳烃 金溶胶 PH值 Surface-enhanced saman spectroscopy; Polycyclic aromatic hydrocarbons; Gold colloid; pH value;
  • 相关文献

参考文献17

  • 1ZHAOWen-chang CHENGJin-ping XIEHai-bin(赵文昌 程金平 谢海赟).环境科学与技术,2006,29(3):105-105.
  • 2LI Xian-guo, GUO Xin-yun, ZHOU Xiao(李先国, 虢新运, 周 晓). 中国海洋大学学报, 2008, 38(3): 473.
  • 3Fleischmann M, Hendra P, McQuilla A J. Chemical Physics Letters, 1974, 26(2): 163.
  • 4Kneipp K, Wang Y, Kneipp H, et al. Physical Review Letters, 1997, 78(9): 1667.
  • 5Nie S M, Emory S R. Science, 1997, 275(5303): 1102.
  • 6Moskovits M. Rev. Mod. Phys., 1985, 57(3): 783.
  • 7Otto A. Journal of Raman Spectroscopy, 2005, 36(12): 497.
  • 8Olson L G, Uibe R H, Harris J M, et al. Applied Spectroscopy,2004, 58(12): 1394.
  • 9Peron O, Rinnert E, Lehaitre M, et al. Talanta, 2009, 79(2): 199.
  • 10Jones C L, Bantz K C, Haynes C L, Analytical and Bioanalytical Chemistry, 2009, 394(1): 303.

共引文献1

同被引文献218

引证文献21

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部