期刊文献+

数值仿真轴向运动黏弹性梁非线性参激振动 被引量:6

Numerical investigation into nonlinear parametric resonance of axially accelerating viscoelastic beams
在线阅读 下载PDF
导出
摘要 分别通过两种直接数值方法研究速度变化的经典边界条件下轴向运动黏弹性梁参数振动的稳定性。在控制方程的推导中,采用物质导数黏弹性本构关系和只对时间取偏导数的黏弹性本构关系;分别运用有限差分法和微分求积法对两种经典边界下轴向变速运动黏弹性梁的非线性控制方程求数值解,计算得到梁中点非线性参数振动的稳定稳态响应。数值结果表明,两种黏弹性本构关系对应的稳态响应存在明显差别,同时发现两种直接数值方法的仿真结果基本吻合,证明数值仿真具有较高精度。 Steady-state responses of transverse parametric vibration of axially accelerating viscoelastic beam with two classical boundary conditions are respectively investigated via two different numerical ways. The governing equation is derived from the viscoelastic constitution relation respectively in terms of material derivative and the partial time derivative. The differential quadrature method is applied direct- ly to the governing equation to determine the steady-state responses of center of the beam due to nonlin- ear parametric resonance. Numerical simulations show the effects of the two viscoelastic constitutive re- lations on the steady-state responses. The finite difference schemes are developed to verify results via the method of differential quadrature. Quantitative comparisons demonstrate that the approximate analysis results are with rather high precision.
作者 丁虎
出处 《计算力学学报》 EI CAS CSCD 北大核心 2012年第4期545-550,共6页 Chinese Journal of Computational Mechanics
基金 国家杰出青年科学基金(10725209) 国家自然科学基金(10902064) 上海市优秀学科带头人计划(09XD1401700) 上海市青年科技启明星计划(11QA1402300) 上海市教育委员会科研创新(12YZ028) 上海市重点学科建设(S3106) 长江学者和创新团队发展计划基金课题(IRT0844)资助项目
关键词 轴向运动梁 黏弹性 参数共振 微分求积法 有限差分法 axially moving beam viscoelasticity parametric resonance finite difference method differential quadrature method
  • 相关文献

参考文献10

二级参考文献129

共引文献134

同被引文献55

  • 1彭海波,申永军,杨绍普.一种含负刚度元件的新型动力吸振器的参数优化[J].力学学报,2015,47(2):320-327. 被引量:30
  • 2陈树辉,黄建亮.轴向运动梁非线性振动内共振研究[J].力学学报,2005,37(1):57-63. 被引量:60
  • 3朱伯芳.有限单元法原理及应用[M].北京:中国水力水电出版社,1998..
  • 4Oz H R , PAKDEMiRLi M. Vibrations of an axially moving beam with time-dependent velocity[J]. Jour- nal of Sound and Vibration, 1999,227(2) :239-257.
  • 5Chang J R,Lin W J, Huang C J,et al. Vibration and stability of an axially moving rayleigh beam [J]. Applied Mathematical Modeling, 2010,34:1482-1497.
  • 6Stylianou M , Tabarrok B. Finite element analysis of an axially moving beam(Part I)time integration[J]. Journal of Sound and Vibration, 1994,178 (4) : 433- 453.
  • 7Stylianou M, Tabarrok B. Finite element analysis of an axially moving beam(Part II)stability analysis[J]. Journal of Sound and Vibration, 1994,178 (4) : 455- 481.
  • 8Al-Bedoor B O, Khulief Y A. Finite element dynamic modeling of a translating and rotating flexible link [J]. Computer Methods in Applied Mechanics and Engineering, 1996,131 : 173-189.
  • 9桧斌,高跃飞,余龙.MATLAB有限元结构动力学分析与工程应用[M].北京:清华大学出版社,2009.
  • 10胡宇达,李晶,郭兴明.导电薄板的磁弹性组合共振分析[J].应用数学和力学,2008,29(8):954-966. 被引量:21

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部