摘要
此文对无黏性不可压缩流场中两个可以膨胀和收缩的运动圆柱体间的水动力相互作用问题进行了理论研究。研究方法是以圆定理和复变函数为工具,通过建立坐标变换关系,运用连续补函数方法求得流场中两个圆柱体运动下流场的复势,然后通过对复势的曲线积分得到了运动物体的附加质量矩阵,并利用Lagrange方程建立了由物体和液体组成的哈密顿系统中运动物体的动力学方程组,最后计算出这些物体的运动轨迹。此文用不同方法部分验证了Wang的结论:当两个圆柱体同时膨胀(收缩),或沿它们的连心线运动时,它们相互排斥;当一个圆柱体膨胀而另一个圆柱体收缩,或两圆柱体垂直于它们的连心线运动时,它们相互吸引。研究发现,由于附加质量被引入到物体的加速度变化中,在完全的水动力流固耦合下,膨胀(收缩)的运动圆柱系统显示出复杂的非线性特性。
In this paper, the hydrodynamic interaction between two circular cylinders translating in an inviscid and incompressible unbounded fluid is theoretically investigated for the case of periodic radius variations. At first, the complex potential of the corresponding flow field is derived using the method of successive offset functions. And then the instantaneous added-mass coefficients are obtained using a method extended from one given by Landweber and Yih. Finally, the Lagrange equations of motion are employed to acquire a dynamical equation of motion in vector form for describing trajectories of these translational bodies. Numerical results reveal some interesting phenomena of moving circular cylinders in fluid. It is confirmed that the two circular cylinders with periodic radius variations in an ideal fluid are attracted to each other as one of them expands and the other contracts, or as they translate perpendicular to the line of centers; whereas they are repelled from each other as both of them expand and contract, or as they translate along the line of centers.
出处
《水动力学研究与进展(A辑)》
CSCD
北大核心
2012年第4期383-387,共5页
Chinese Journal of Hydrodynamics
基金
国家自然科学基金项目(10872130)~~
关键词
两个圆柱体
膨胀和收缩
水动力相互作用
two circular cylinders
expansion and contraction
hydrodynamic interaction