期刊文献+

基于本征模态函数包络谱的滚动轴承故障诊断 被引量:1

Fault Diagnosis of Rolling Bearing Based on Envelope Spectrum of Intrinsic Mode Function
在线阅读 下载PDF
导出
摘要 针对滚动轴承故障振动信号非平稳的特征,以及传统傅里叶变换不能反映信号细节的缺陷,引入了一种基于本征模态函数包络谱的方法。首先,采用经验模态分解(empirical mode decomposition,EMD)将滚动轴承故障振动信号分解成若干个本征模态函数(intrinsicmode function,IMF)之和;然后,求出包含主要信息成分的IMF分量的Hilbert包络谱;最后,对照滚动轴承故障特征频率,进而判定故障类型。通过对滚动轴承内圈、外圈故障振动信号的分析处理,表明该方法能有效地提取滚动轴承的故障特征。 According to the non-stationary characteristics limitation of traditional Fourier transform unable to reflect the of the rolling bearing fault vibration signals and the details of signal, a fault diagnosis method based on envelope spectrum of intrinsic mode function was introduced. First, rolling bearing fault vibration signals were decomposed into a finite number of intrinsic mode functions (IMFs) using empirical mode decomposition (EMD) ; then, the envelope spectra of some IMFs including the main fault information were calculated ; finally, fault patterns were identified by contrast with characteristic defect frequencies of rolling bearing. Based on processing and analysis of the roiling bearing vibration signals with inner race and out race fault, the result shows that this method can extract rolling bearing fault characteristics effectively.
出处 《机电一体化》 2012年第7期60-64,共5页 Mechatronics
基金 国家科技重大专项(2009ZX0414-103) 上海市经信委引进技术的吸收与创新项目(11XI-07)
关键词 包络谱 本征模态函数 滚动轴承 故障诊断 经验模态分解 envelope spectrum intrinsic mode function rolling bearing fault diagnosis EMD
  • 相关文献

参考文献3

  • 1NORDEN E HUANG. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis [ J ]. Proc. R. Soc. Lond. A, 1998 (454) : 903 - 995.
  • 2雷亚国.基于改进Hilbert-Huang变换的机械故障诊断[J].机械工程学报,2011,47(5):71-77. 被引量:132
  • 3RAI V K, MOHANTY A R. Bearing fault diagnosis using FFT of intrinsic mode function in Hilbert-Huang transform [ J ]. Mechanical Systems and Signal Processing, 2007 (21) : 2607-2615.

二级参考文献10

  • 1HUANG N E, SHEN Z, LONG S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London, 1998, 454(1): 903-995.
  • 2HUANG N E, SHEN Z, LONG S R. A new view of nonlinear water waves: The Hilbert spectrum [J]. Annual Review of Fluid Mechanics, 1999, 31: 417-457.
  • 3LIU B, RIEMENSCHNEIDER S, XU Y. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrmn [J]. Mechanical Systems and Signal Processing, 2006, 20. 718-734.
  • 4RAI V K, MOHANTY A R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform [J]. Mechanical Systems and Signal Processing, 2007, 21: 2607-2615.
  • 5BABU T R, SRIKANTH S, SEKHAR A S. Hilbert-Huang transform for detection and monitoring of crack in a transient rotor [J]. Mechanical Systems and Signal Processing, 2008, 22: 905-914.
  • 6LI Y J, TSE P W, YANG X, et al. EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engine [J]. Mechanical Systems and Signal Processing, 2010, 24: 193-210.
  • 7WU Z H, HUANG N E. Ensemble empirical mode decomposition: A noise assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1 : 1-41.
  • 8CHU F L, LU W X. Experimental observation of nonlinear vibrations in a rub-impact rotor system [J]. Journal of Sound and Vibration, 2005, 283: 621-643.
  • 9雷亚国,何正嘉,訾艳阳.基于混合智能新模型的故障诊断[J].机械工程学报,2008,44(7):112-117. 被引量:107
  • 10杨露,沈怀荣.希尔伯特-黄变换与小波变换在故障特征提取中的对比研究[J].兵工学报,2009,30(5):628-632. 被引量:18

共引文献131

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部