期刊文献+

玻璃质微通道流动阻力特性的数值模拟 被引量:1

Numerical simulation of flow resistance characteristics in wet-etched glass microchannel
在线阅读 下载PDF
导出
摘要 针对湿法刻蚀玻璃微通道截面具有圆角形状的特性,采用Fluent6.3软件,对以水为介质的圆角形微通道内的流动特征进行数值计算研究。基于层流流动模型,对不同雷诺数Re、不同形状因子下圆角形微通道的流动压降进行数值模拟;通过结果整理与分析,拟合圆角形微通道Poisueille数Po随截面形状因子α变化的经验公式,即Po=10.161 1-2.408 5α+0.166 0α2+0.480 9α3-0.197 9α4+0.023 4α5;对此经验公式在不同微通道截面和不同黏度流体流动条件下的适应性进行了验证。研究结果表明:雷诺数与截面形状对圆角形微通道流动压降有很大影响;当截面宽度一定时,压降随雷诺数和形状因子的增大而增加;在所研究的雷诺数范围内,圆角形微通道Poiseuille数不随雷诺数的变化而变化,而随截面形状因子的增大而减小;当雷诺数0.01≤Re≤40、截面形状因子0.4≤α≤3.2时,本文中介绍的圆角形微通道阻力系数经验公式均适用。 Numerical study was conducted on the flow resistance characteristics of water in semi-circle wet etched glass microchannels with Fluent 6.3.Numerical simulations were made to study the flow pressure drop at various Re numbers and aspect ratio α based on laminar flow model.An equation was obtained through the simulation results to describe the relationship between the Po number and the aspect ratio,i.e.,Po=10.161 1-2.408 5α+0.166 0α2+0.480 9α3-0.197 9α4+ 0.023 4α5.Then several validations were conducted with microchannels of different geometric parameters and fluids of different viscosity.The results show that both Re number and aspect ratio have significant impacts on the flow pressure drop,i.e.the pressure drop increases with the increase of Re number and α when the width of the microchannel is constant.The Poiseuille number of the flow is constant within the range of Re number of interest,but it decreases with the increase of the aspect ratio.The equation is validated in the range of 0.01≤Re≤20,0.4≤α≤3.2.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第6期2413-2418,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(51106184) 湖南有色集团-中南大学有色研究基金资助项目(Y2010-01-005)
关键词 玻璃质微通道 压降 截面形状 阻力系数 glass microchannel pressure drop cross-section shape friction factor
  • 相关文献

参考文献25

  • 1Jansen H, Gardeniers H, de Boer M, et al. A survey on the reactive ion etching of silicon in microtechnology[J]. Journal ofMicromechanics Microengineering, 1996, 6(1): 14-28.
  • 2Iliescu C, Tay F E H, MIAO Jian-min. Strategies in deep wet etching of Pyrex glass[J]. Sensors and Actuators A: Physical, 2007, 133: 395-400.
  • 3Saito Y, Okamoto S, Miki A, et al. Fabrication of micro- structure on glass surface using micro-indentation and wet etching process[J]. Applied Surface Science, 2008, 254: 7243-7249.
  • 4L1U Yong-xun, Ishii K, Tsutsumi T, et al. Ideal rectangular cross-section Si-fin channel double-Gate MOSFETs fabricated using orientation-dependent wet etching[J]. IEEE Electron Device Letters, 2003, 24(7): 484-486.
  • 5Iliescu C, MIAO Jian-min, Tay F E H. Optimization of PECVD amorphous silicon process for deep wet etching of Pyrex glass[J]. Surface and Coatings Technology, 2005, 192: 43-47.
  • 6Shah R K, London A L. Laminar Flow Forced Convection in Ducts[M]. New York: Academic Press, 1978: 157.
  • 7Wu P ~, Little W A. Measurement of friction factors for the flow of gases in very fine channels used for microminiaturize Joule-Thomson refrigerators[J]. Cryogenics, 1983, 24(8): 273-277.
  • 8Harley J, Huang Y, Bau H, et al. Gas flow in microchannels[J]. Journal of Fluid Mechanics, 1995,284: 257-274.
  • 9Yang C Y, Chien H T, Lu S R, et al. Friction characteristics of water, R134a and air in small tubes[C]//Celata, G P, ed. Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale. New York: Begell House, 2000: 168-174.
  • 10Judy J, Maynes D, Webb B pressure drop for liquid W. Characterization of frictional flows Intemational Joumal of Heat and through microchannels[J] Mass Transfer, 2002, 45 3477-3489.

二级参考文献34

  • 1蒋炳炎,王麟,谢磊,黄伯云.金属粉末注射成形仿真分析的喂料粘度模型参数[J].中国有色金属学报,2005,15(3):429-434. 被引量:8
  • 2李勇,江小宁,周兆英,叶雄英.微管道流体的流动特性[J].中国机械工程,1994,5(3):24-25. 被引量:20
  • 3蒋炳炎,谢磊,谭险峰,彭华建.微尺度聚合物熔体的非等温平板收缩流动数值仿真[J].南昌航空工业学院学报,2005,19(1):6-12. 被引量:1
  • 4武东健,贾建援,王卫东.微细管道内的流体阻力分析[J].电子机械工程,2005,21(4):38-40. 被引量:5
  • 5Chen Y P, Cheng P. Condensation of Steam in Silicon Microchannels. International Communications in Heat and Mass Transfer, 2005, 32(1-2): 175 183.
  • 6Peterson G P, Ma H B. Temperature Response of Heat Transport in a Micro Heat Pipe. Journal of Heat Transfer, 1999, 121(2): 438-445.
  • 7Chen Y P, Wu J F, Shi M H, et al. Numerical Simulation for Steady Annular Condensation Flow in Triangular Microchannels. International Communications in Heat and Mass Transfer, 2008, 35(7): 805-809.
  • 8Bruce R Munson, Donald F Young,Theodore H Okiishi. Fundarnentals of Fluid Mechanics[M]. Beijing: Publishing House of Electronics Industry, 2006: 325--326.
  • 9Pega Hrnjak, Xiao Tu. Single phase pressure drop in microchannels[J].International Journal of Heat and Fluid Flow, 2007,28:2-14.
  • 10Hu Y D, Werner C, Li D Q. Influence of three dimensional roughness on pressure-driven flow through micro channels [J]. ASME Journal of Fluids Engineering, 2003,125 (4):871-879.

共引文献23

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部