期刊文献+

根据稀疏基底选择抽样模型

Sampling Model Selection According to Sparse Base
原文传递
导出
摘要 在压缩传感技术应用中,根据稀疏基底选择抽样模型对重构结果影响很大。在傅里叶空间中,极坐标星形抽样和随机抽样的重构效果差异巨大,应用傅里叶光学理论对傅里叶空间的频谱分布进行分析,从理论上解释了原因,并且据此提出稀疏基底和抽样模型的匹配情况会影响重构效果。在小波空间中,进行了均匀抽样和随机抽样的对比重构实验,发现后者的重构效果更好,并确定了根据稀疏基底选择合适抽样模型的可行性,为实际应用中降低抽样率,提高重构效果提供了方法依据。 The study about the compressed sensing technology indicates that selecting sampling model according to the sparse base has great influence on the reconstruction results. In the Fourier space, there are huge differences between the reconstructions of the stellate sampling of polar coordinates and the random sampling. The spectral distribution of the Fourier space is analyzed by Fourier optical theory and the phenomena is explained theoretically. It is proposed that the matching degree between the sparse base and the sampling model may affect the reconstruction effect. In the wavelet space, a comparison experiment of reconstruction is taken with the uniform sampling and the random sampling, and the latter is better. Therefore, a method is provided for the practical application to reduce the sampling rate and improve the reconstruction effect by choosing suitable sampling models according to the sparse bases.
出处 《光学学报》 EI CAS CSCD 北大核心 2012年第8期68-73,共6页 Acta Optica Sinica
关键词 傅里叶光学 抽样模型选取 小波变换 压缩传感 稀疏基底 Fourier optics sampling model selection wavelet transform compressed sensing sparse base
  • 相关文献

参考文献13

  • 1E. J. Candes, J. K. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements [ J]. Commun. Pure and Applied Mathematics, 2006. 59(8): 1207-1223.
  • 2G. Chen, J. Tang, S. Leng. Prior image constrained compressed sensing (PICCS) : a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets[J]. Med. Plys. , 2008, 3S(2): 660-663.
  • 3E. Y. Sidky, X. Pan. Image reconstruction in circular cone- beam computed tornography by constrained, total-variation minimization [ J ]. Physics in Medicine and Biology, 2008,53(17) : 4777-4807.
  • 4M. Lustig, D. Donoho, J. M. Pauly. Sparse MRI: the application of compressed sensing for rapid MR imaging [J].Magn. Reson. Med. , 2007, 58(6): 1182-1195.
  • 5J. Trzasko, A. Manduca, E. Borisch. Robust kernel methods for sparse MR image reconstruction: medical image computing and computer-assisted intervention MICCAI 2007[C]. Brisbane: Springer, 2007, 4791:809-816.
  • 6D. Takhar, J. N. Laska, M. B. Wakin et al.. A new compressive Imaging camera architecture using optical-domain compression[C]. SPIE, 2006, 65119:43-52.
  • 7高睿,赵瑞珍,胡绍海.基于压缩感知的变步长自适应匹配追踪重建算法[J].光学学报,2010,30(6):1639-1644. 被引量:48
  • 8潘榕,刘昱,侯正信,汪少初.基于局部DCT系数的图像压缩感知编码与重构[J].自动化学报,2011,37(6):674-681. 被引量:28
  • 9陆明海,沈夏,韩申生.基于数字微镜器件的压缩感知关联成像研究[J].光学学报,2011,31(7):98-103. 被引量:52
  • 10赵亚芹 张亮亮 祝德充等.基于压缩传感的单点太赫兹成像.中国激光,2011,38(1):1110-1110.

二级参考文献19

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E J, Romberg J, Tao T. Robust uncertainty prin- ciples: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Yang J F, Zhang Y, Yin W T. A fast alternating direc- tion method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE Journal of Selected Topics in Signal Pro- cessing, 2010, 4(2): 288-297.
  • 4姚庆东,毕厚杰,王兆华,徐孟侠.图像编码基础(第i版).北京:清华大学出版社,2006.50.
  • 5Xie X C, Yu L J. A new video codec based on compressed sensing. In: Proceedings of the 2nd International Congress on Image and Signal Processing. Tianjin, China: IEEE, 2009. 1-5.
  • 6Sarkis M, Diepold K. Depth map compression via com- pressed sensing. In: Proceedings of the 16th IEEE Interna- tional Conference on Image Processing. Cairo, Egypt: IEEE, 2009. 737-740.
  • 7Zhang Y F, Mei S L, Chen Q Q, Chen Z B. A novel im- age/video coding method based on compressed sensing the- ory. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA: IEEE, 2008. 1361-1364.
  • 8Candes E J, Romberg J. Sparsity and incoherence in com- pressive sampling. Inverse Problems, 2007, 23(3): 969-985.
  • 9Candes E J, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 10Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004.

共引文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部