期刊文献+

规则递归T-S模糊模型及其辨识方法 被引量:1

A T-S Fuzzy Model with Recurrent Rule and Its Identification Method
在线阅读 下载PDF
导出
摘要 针对传统T-S模糊模型不能较好描述系统时变特性的问题,提出了一种基于递归策略的动态T-S模糊模型及其辨识方法.规则递归T-S模糊模型在传统T-S模糊模型基础上,增加了具有一定权重的反馈环节,该环节对当前激励强度与前一时刻激励强度进行加权和得到当前时刻新的规则激励强度,从而实现动态递归变化,有效描述了系统的动态过程.为使规则递归T-S模糊模型具有较少的规则数量和较好的泛化能力,前件参数采用一种基于规则激励强度的模糊聚类算法获得,而后件和递归环节参数则采用一种由支持向量机和粒子群优化算法组成的联合辨识方法获得.Box-Jenkins煤气炉的仿真结果表明,规则递归T-S模糊模型及其辨识方法具有较好的动态描述能力,与混合聚类方法相比,均方差降低了1.2%. A dynamic T-S fuzzy model with a recurrent rule structure (TFM-RR) and its identification are proposed to improve the problem that conventional T-S fuzzy models can not exactly describe the time-varying characteristics of systems. A weighted feedback component that bases on the traditional T-S fuzzy model, is introduced in TFM-RR, and produces a new firing strength of the current rule from the weighted sum of the current firing strength and the previous firing strength. Thus, the firing strength of a rule varies dynamically and recursively, and effectively describes the dynamic process of the system. In order to make TFM-RR has fewer rules and good generalization capabilities, parameters of the antecedent of a rule are achieved using a fuzzy clustering algorithm that bases on the firing strength of the rule, while parameters of the consequent and the recursion are achieved by an integrated identification method that combines the support vector machine and a particle swarm optimization algorithm. Simulation results and comparisons with the hybrid clustering method on Box-Jenkins gas furnace show that the TFM-RR and its identification algorithm significantly reduce the mean variance by 1.2 %, and show a better dynamic description ability.
作者 梁炎明 刘丁
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第8期54-58,共5页 Journal of Xi'an Jiaotong University
基金 国家科技重大专项资助项目(2009ZX02011001) 国家自然科学基金资助项目(61075044)
关键词 T-S模糊模型 规则递归 模糊聚类 支持向量机 粒子群优化 T-S model recurrent rule fuzzy clustering support vector machine particle swarmoptimization
  • 相关文献

参考文献16

  • 1TAKAGI T, SUGENO M. Fuzzy identification of sys- tems and its applications to modeling and control [J]. IEEE Transactions on Systems, Man, and Cybernet- ics, 1985, 15(1): 116-132.
  • 2CHENG Long, HOU Zengguang, LIN Yingzi, et al. Recurrent neural network for non-smooth convex opti- mization problems with application to the identification of genetic regulatory networks [J]. IEEE Transactions on Neural Networks, 2011, 22(5):714-726.
  • 3彭宇,王建民,彭喜元.模糊回声状态网络[J].电子学报,2011,39(7):1538-1544. 被引量:8
  • 4YANG Yong, MAHFOUF M, QIAN Zhang. Optimal input selection for neural fuzzy modelling with applica- tion to Charpy energy prediction[C] // Proceedings of IEEE International Conference on Fuzzy Systems. Pis- cataway, NJ, USA: IEEE, 2011: 2756-2762.
  • 5王心哲,韩敏.基于变量选择的转炉炼钢终点预报模型[J].控制与决策,2010,25(10):1589-1592. 被引量:17
  • 6LU Chihuang. Wavelet fuzzy neural networks for iden- tification and predictive control of dynamic systems [J].IEEE Transactions on Industrial Electronics, 2011, 58(7), 3046-3058.
  • 7JANG J S R, SUN C T. Functional equivalence be- tween radial basis function networks and fuzzy infer- ence system [J]. IEEE Transactions on Neural Net- works, 1993, 4(1): 156-159.
  • 8JUANG Chia-Feng, LIN Chin-Teng. An on-line self- constructing neural fuzzy inference network and its ap- plications [J]. IEEE Transactions on Fuzzy Systems, 1998, 6(1): 12-32.
  • 9梁炎明,刘丁.一种T-S模糊模型的自组织辨识算法及应用[J].仪器仪表学报,2011,32(9):1941-1947. 被引量:8
  • 10杨延西,刘丁,辛菁.基于混沌粒子群优化的图像相关匹配算法研究[J].电子与信息学报,2008,30(3):529-533. 被引量:17

二级参考文献84

共引文献50

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部