期刊文献+

Critical behavior of higher cumulants of order parameter in the 3D-Ising universality class 被引量:1

Critical behavior of higher cumulants of order parameter in the 3D-Ising universality class
原文传递
导出
摘要 QCD deconfinement phase transition is supposed to be the same universality class as the 3D-Ising model. According to the universality of critical behavior, the Binder-like ratios and ratios of higher cumulants of order parameter near the critical temperature in the 3D-Ising model are studied. The Binder-like ratio is shown to be a step function of temperature. The critical point is the intersection of the ratios of different system sizes between two platforms. The normalized cumulant ratios, like the Skewness and Kurtosis, do not diverge with correlation length, contrary to the corresponding cumulants. Possible applications of these characters in locating critical point in relativistic heavy ion collisions are discussed. QCD deconfinement phase transition is supposed to be the same universality class as the 3D-Ising model. According to the universality of critical behavior, the Binder-like ratios and ratios of higher cumulants of order parameter near the critical temperature in the 3D-Ising model are studied. The Binder-like ratio is shown to be a step function of temperature. The critical point is the intersection of the ratios of different system sizes between two platforms. The normalized cumulant ratios, like the Skewness and Kurtosis, do not diverge with correlation length, contrary to the corresponding cumulants. Possible applications of these characters in locating critical point in relativistic heavy ion collisions are discussed.
出处 《Chinese Physics C》 SCIE CAS CSCD 2012年第8期727-732,共6页 中国物理C(英文版)
基金 Supported by National Natural Science Foundation of China(10835005) MOE of China(IRT0624,B08033)
关键词 QCD deconfinement phase transition critical point 3D-Ising model Binder-like ratios ratios of higher cumulants QCD deconfinement phase transition, critical point, 3D-Ising model, Binder-like ratios, ratios of higher cumulants
  • 相关文献

参考文献34

  • 1Stephanov M A, Rajagopal K, Shuyak E. Phys. Rev. Lett., 1998, 81: 4816; Jeon S, Koch V. Phys. Rev. Lett., 2000, 85: 2076; Asakawa M, Heinz U, Müller B. Phys. Rev. Lett., 2000, 85: 2072; Heiselberg H. Phys. Rept., 2001, 351: 161.
  • 2Hatta Y, Stephanov M A. Phys. Rev. Lett., 2003, 91: 102003; Hatta Y, Ikeda T. Phys. Rev. D, 2003, 67: 014028.
  • 3Antoniou N G, Diakonos F K, Kapoyannis A S, Kousouris K S. Phys. Rev. Lett., 2006, 97: 032002; Bower D, Gavin S. Phys. Rev. C, 2001, 64: 051902; Antoniou N G. Nucl. Phys. B, Proc. Suppl., 2001, 92: 26.
  • 4Kapusta J. arXiv: 1005.0860.
  • 5Koch V. arXiv: 0810.2520.
  • 6Stephanov M A. Phys. Rev. Lett., 2009, 102: 032301.
  • 7Athanasiou C, Rajagopal K, Stephanov M. arXiv: 1006.4636; Athanasiou C, Rajagopal K, Stephanov M. arXiv: 1008.3385.
  • 8Aggarwal M M et al. Phys. Rev. Lett., 2010, 105: 022302.
  • 9Stephanov M A. Int. J. Mod. Phys. A, 2005, 20: 4387.
  • 10CHENG M, Hegde P, Jung C, Karsch F, Kaczmarek O, Laermann E, Mawhinney R D, MIAO C, Petreczky P, Schmidt C, Soeldner W. Phys. Rev. D, 2009, 79: 074505.

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部