期刊文献+

Generation of a genuine six-partite entangled state in trapped-ion system 被引量:1

Generation of a genuine six-partite entangled state in trapped-ion system
原文传递
导出
摘要 Recently, a genuine six-qubit entangled state Isix) has been proposed [Chen P X, et al. Phys Rev A, 2006, 74: 032324]. This state does not belong to the well-known three types of multipartite entangled states, i.e., Greenberger-Home-Zeilinger (GHZ) state, W state, and linear cluster state. This state has many potential applications in quantum information processing. We pro- pose a scheme for generating such a genuine six-qubit entangled state for trapped ions in thermal motion. The scheme is insen- sitive to both the initial motional state and heating. Recently, a genuine six-qubit entangled state |six> has been proposed [Chen P X, et al. Phys Rev A, 2006, 74: 032324]. This state does not belong to the well-known three types of multipartite entangled states, i.e., Greenberger-Horne-Zeilinger (GHZ) state, W state, and linear cluster state. This state has many potential applications in quantum information processing. We propose a scheme for generating such a genuine six-qubit entangled state for trapped ions in thermal motion. The scheme is insensitive to both the initial motional state and heating.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第8期1427-1430,共4页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 61071025 and 61172047) the Important Program of Hunan Provincial Education Department (Grant No. 06A038) Department of Education of Hunan Province (Grant No. 06C080) Hunan Provincial Natural Science Foundation, China (Grant No. 07JJ3013)
关键词 six-qubit:trapped ion six-qubit:entangled state 纠缠态 子系统 量子信息处理 运动状态 量子比特 量子位 GHZ 热运动
  • 相关文献

参考文献24

  • 1Einstein A, Poldilsky B, Rosen N. Can quantum mechanical descrip- tion of physical reality be considered complete? Phys Rev, 1935, 48: 696-702.
  • 2Zheng S B. One-step synthesis of multiatom Greenberger-Home- Zeilinger states. Phys Rev Lett, 2001, 87:230404-230407.
  • 3Vitali D, Fortunato M, Tombesi P. Complete quantum teleportation with a Kerr nonlinearlity. Phys Rev Lett, 2000, 85:445--448.
  • 4Yang M, Zhao Y, Song W, et al. Entanglement concentration for un- known atomic entangled states via entanglement swapping. Phys Rev, 2005, 71:044302.
  • 5Bennett C H, Wiesner S J. Communication via one and two-particle operator on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69: 2881-2884.
  • 6Greenberger D M, Home M A, Zeilinger A. Bell theorem without inequalities for two particles. 1. Efficient detectors. Phys Rev, 2008, 78:022110.
  • 7Dur W, Vidal G, Cirac J I. Three qubits can be entangled in two in- equivalent ways. Phys Rev, 2000, 62:062314.
  • 8Briegel H J, Raussendorf R. Persistent entanglement in arrays of in- teracting particles. Phys Rev Lett, 86:910-913.
  • 9Yeo Y, Chua W K. Teleportation and dense coding with genuine multipartite entanglement. Phys Rev Lett, 2006, 96:060502.
  • 10Wang X W, Yang G J. Generation and discrimination of a type of four-partite entangled state. Phys Rev A, 2008, 78:024301.

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部