期刊文献+

基于改进尺度不变特征转换算法的合成孔径雷达图像配准并行研究 被引量:3

Parallel Research and Implementation of SAR Image Registration Based on Optimized SIFT
在线阅读 下载PDF
导出
摘要 提出了一种基于改进尺度不变特征转换(SIFT)算法的合成孔径雷达(SAR)图像配准方法。该方法采用多核平台对SIFT算法进行优化,克服了SIFT算法计算时间复杂度高的问题。针对SAR图像特点,首先对源图像进行空域增强处理,然后采用改进的SIFT算法完成特征点并行提取,并利用欧氏距离以及RANSAC算法完成特征点的匹配与消除误匹配,最终实现SAR图像配准。实验结果证明,该方法能在保证配准精度的同时降低配准的时间复杂度。 A new SAR image registration method was proposed based on improved SIFT algorithm, which adopted multi-core system platform to overcome the problem of high complexity algorithm of SIFT algorithm. According to the characteristics of SAR image, first of all, it enhanced the source SAR image in airspace, and finished the parallel extraction of feature points with the improved SIFT algorithm, then used Euclidean distance and the RANSAC algorithm to complete the matching of fea- ture points and eliminate unmatching, and finally realized the SAR image registration. The experimen- tal results show that the method can guarantee the registration precision and reduce the complexity of the registration.
出处 《重庆理工大学学报(自然科学)》 CAS 2012年第6期50-55,共6页 Journal of Chongqing University of Technology:Natural Science
基金 重庆理工大学研究生创新基金资助项目(YCX2011309)
关键词 尺度不变特征转换 空域增强 并行优化 合成孔径雷达图像配准 scale in-variant feature transform airspace enhance parallel optimization synthetic ap-erture radar image registration
  • 相关文献

参考文献14

二级参考文献80

共引文献105

同被引文献30

  • 1罗玲,王修信.一种改进的遗传算法与最大互信息图像配准方法[J].广西物理,2010,31(4):1-4. 被引量:2
  • 2Buades A, Coil B, Morel J M. A non -local algorithm for image denoising[ C ]//Computer Vision aml Pattern Recog- nition,2005. CVPR 2005. IEEE Computer Society Confer- ence on. IEEE,2005(2) :60 -65.
  • 3Salembier P,Garrido 1,. Binary partition tree as an effieAent representation for image processing,segmentation and infor- mation retrieval [ J ]. IEEE Trans. Image Process, 2000,9 (4) :561 -576.
  • 4Cloude S,Pnttier E. A review of target deeomposilion /heo- rents in radar tx~larimetly [ J ]. IEEE Trans. Geosei. Remote Sens. , 1996,34(2) :498 -518.
  • 5N. R. Goodman. Statistical analysis based on a certain muh- ivariate complex (,aussian distribution ( an introduction) [ J ]. Ann Math Stat, 1993,34 ( 3 ) : 152 - 177.
  • 6Lee J S,Hoppel K, Mango S,et al. Intensity and phase sta- tistics of multilook polarimetrie and interferometrie SAR im- agery [ J ]. IEEE Trans. Geosei, Remote Sens. , 1994,2 ( 5 ) : 1017 - 1028.
  • 7Tough R J A,Blaeknell D,Quegan S. A statistical descrip- tion of polarimetrie and interferometrie synthetic aperture radar data [ J ]. Proe. I'L Soe. Lond. , 1995,449 ( 1 ) : 567 - 589.
  • 8贾伟杰.SAR影像与可见光影像配准研究[D].武汉:武汉理工大学,2010.
  • 9Zheng Y, Cui Z G, Xue Y. Multi-spectral remote image registration based on SIFT [ J ]. Electronics Letters, 2008, 44(2) :107-108.
  • 10Gong M G, Zhao S M, Jiao L C. A Novel Coarse-to-Fine Scheme for Automatic Image Registration Based on SIFI" and Mutual Information [ J ]. IEEE Transactions on Geo- science and Remote Sensing, 2014, 52 ( 7 ) :4328- 4338.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部