摘要
The E1 Nifio-Southern Oscillation (ENSO) is emphasized the roles of wind stress and heat flux environmental forcing to the ocean; its effect and modulated by many factors; most previous studies have in the tropical Pacific. Freshwater flux (FWF) is another the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (QB) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Qs variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nifia and enhancing warming during E1 Nifio, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.
The E1 Nifio-Southern Oscillation (ENSO) is emphasized the roles of wind stress and heat flux environmental forcing to the ocean; its effect and modulated by many factors; most previous studies have in the tropical Pacific. Freshwater flux (FWF) is another the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (QB) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Qs variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nifia and enhancing warming during E1 Nifio, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.
基金
supported in part by NSF Grant(ATM-0727668and AGS-1061998)
NOAA Grant(NA08OAR4310885)
NASA Grants(NNX08AI74G,NNX08AI76G,and NNX09AF41G)
F.Zheng is supported by the National Basic Research Program of China(GrantNos.2012CB417404and2012CB955202)
the Natural Science Foundation of China(Grant No.41075064)
Pei is additionally supported by China Scholarship Coun-cil(CSC) with the Ocean University of China,Qingdao,China