期刊文献+

等通道转角挤压ZK31+4Si镁合金的显微组织及高温蠕变行为 被引量:4

Microstructure and Creep Behavior of ECAPed ZK31+4Si Magnesium Alloy
原文传递
导出
摘要 研究ZK31+4Si镁合金经等通道转角挤压(ECAP)后的微观组织和高温蠕变行为。结果表明,ECAP挤压可显著细化原铸态组织中粗大的汉字状Mg2Si相,并使其趋于均匀弥散分布。ECAP挤压后试样的抗蠕变性能明显优于铸态试样,在温度为473K,应力为70MPa的条件下,8道次挤压试样的稳态蠕变速率约为铸态试样的1/15,蠕变寿命提高近8倍。由稳态蠕变速率与应力的对数曲线关系求得473K下4道次挤压和8道次挤压试样的应力指数n均约为4,同时按位错蠕变机制,当应力指数n=4时,理论计算所得稳态蠕变速率与实验值非常吻合,说明在本实验条件下发生的是位错蠕变。 The microstructures and the creep behavior of ZK31+4Si magnesium alloy processed by Equal channel angular pressing(ECAP) were investigated.The experimental results show that the coarse Chinese script-like Mg2Si precipitates are refined to fine polygonal shape particles and redistributed dispersedly after ECAP.The creep resistance is greatly enhanced after ECAP.The ctable creep rate of the 8-pass ECAPed specimen is nearly 1/15 of that of the as-cast one,and its creep life is increased by about 8 times.The curves of the minimum strain rate versus the stress show that the alloy ECAPed either through 8 passes or through 4 passes exhibit a same stress exponent n≈4.Furthermore,the theoretical calculation results according to the dislocation creep model with n=4 are well in agreement with the experimental values,indicating that the creep under the present test condition is controlled by the movement of dislocations.
机构地区 太原理工大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第5期867-871,共5页 Rare Metal Materials and Engineering
基金 山西省青年科技研究基金(2008021033) 山西省归国留学基金(2007-25) 山西省大学生创新创业专项基金(07010727)
关键词 镁合金 显微组织 力学性能 等通道转角挤压 蠕变 magnesium alloy microstructure mechanical properties ECAP creep
  • 相关文献

参考文献13

二级参考文献55

  • 1姜巨福,罗守靖.等径角挤压对AZ91D镁合金力学性能的影响[J].热加工工艺,2004,33(8):3-5. 被引量:21
  • 2贾树卓,徐春杰,张忠明,宋佩维,郭学锋,马胜强.Mg-9 Al-6Si镁合金组织及性能研究[J].铸造技术,2005,26(12):1104-1105. 被引量:11
  • 3刘楚明,刘子娟,朱秀荣,周海涛.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16(1):1-12. 被引量:117
  • 4MORDIKE B L, EBERT T. Magnesium-properties-applicationspotential[J]. Mater. Sci. Eng. , 2001, A302:37-45.
  • 5LUO A,LAN A. Recent magnesium alloy development for automotive power train applieation[J]. Material Science Forum, 2003, 419/422:57-56.
  • 6TAN J C, TAN M J. Superplastic Magnesium Alloy for Sporting and Leisure Equipments[A].//FROES F H, HAAKE S J, eds. Proceedings of Symposium on Materials and Science in Sports[C]. Coronado:California TMS, 2001, 22/25 : 95-104.
  • 7SHIGERU I, YUUJI N, SHIGEHARU K. Age hardening characteristics and high temperature tensile properties of Mg-Gd and Mg2Dy alloys [J]. Journal of Japan Institute of Light Metals, 1994, 44(1): 3-8.
  • 8ROKHLIN L L, NIKITINA N I. Recovery after ageing of Mg-Y and Mg-Gd alloys[J]. Journal of Alloys and Compounds, 1998, 279:166-170.
  • 9NEERAJ T, HOU D H, DAEHN G S, MILLS M J. Phenomenological and microstructural analysis of room temperature creep in titanium alloys[J]. Acta Mater. , 2000, 48:1 225-1 238.
  • 10DAEHN G S. Primary creep transients due to non-uniform obstacle sizes[J]. Mater. Sci. Eng. , 2001, A319/321: 765-769.

共引文献106

同被引文献37

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部