期刊文献+

基于压缩感知的SAR图像压缩与重构方法 被引量:5

SAR Imagery Compressing and Reconstruction Method Based on Compressed Sensing
在线阅读 下载PDF
导出
摘要 结合合成孔径雷达(SAR)图像特点,提出了一种基于压缩感知的SAR图像压缩与重构方法,并给出了具体的方法及详细流程。该方法首先将原始SAR图像进行分块处理,同时,利用离散小波变换(DWT)对分块结果进行稀疏处理,利用近似QR分解后的随机高斯矩阵对稀疏处理结果进行低维线性观测,实现了SAR图像的稀疏化表征与压缩。文中讨论的改进的正交匹配追踪(OMP)算法,与传统的OMP算法相比,改进的OMP算法在保证重构精度的前提下,可有效提高收敛速度。最后,通过离散小波反变换等处理获得最终的SAR图像重构结果。仿真实验结果证明所提方法的有效性与可行性。 In this paper, a new SAR imagery compressing and reconstruction method based on Compressed Sensing (CS) is pro- posed. The detailed step and flow chart of the method are shown based on CS theory and SAR imagery characters. In the method, the SAR imagery can be carved up to several sub-imageries firstly. What's more, Discrete Wavelet Transform (DWT) can be uti- lized to make SAR imagery sparse. And then the random Gauss matrix after approximate Orthogonal-matrix and Right-matrix (QR) decomposition can be employed to complete the low-dimension measurement and the SAR imagery compressing for sparse results. In this paper, a modified Orthogonal Matching Pursuit (OMP) algorithm is proposed. On condition of the same reconstruction pre- cision, the convergency speed is enhanced by using the proposed modified OMP algorithm compared with the original OMP algo- rithm. Furthermore, some processing such as inverse DWT and so on can be engaged to achieve the final reconstructed SAR image- ry. Simulation results prove the effectiveness and feasibility of proposed SAR imagery compressing and reconstruction method.
出处 《现代雷达》 CSCD 北大核心 2012年第5期46-52,共7页 Modern Radar
基金 国家重点基础研究发展计划(973计划)项目(2010CB731905)
关键词 压缩感知 SAR图像 离散小波变换 近似QR分解 随机高斯矩阵 改进的正交匹配追踪算法 compressed sensing SAR imagery discrete wavelet transform approximate QR decomposition random Gauss ma-trix modified orthogonal matching pursuit algorithm
  • 相关文献

参考文献22

二级参考文献143

共引文献737

同被引文献27

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2SullivanRJ.成像与先进雷达技术基础[M].微波成像技术国家重点实验室,译.北京:电子工业出版社,2009.
  • 3Donoho D L. Compressed sensing[ J]. IEEE Transactions on Information Theory, 2006,52(4) :1289 - 1306.
  • 4Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[ J]. IEEE Transactions on Information Theory, 2006,52 (4) :489 - 509.
  • 5Bhattacharya S, Blumensath T, Mulgrew B, et al. Fast encoding of synthetic aperture radar raw data using compressed sensing[ C ]. IEEE Work- shop on Statistical Signal Processing. Madison, USA : IEEE Press, 2007:448 - 452.
  • 6Le Pennec E, Mallat S. Sparse geometric image representations with bandelets[ J ]. IEEE Transactions on Image Processing, 2005,14 (4) :423 - 438.
  • 7Mallat S, PEYRE'G. Orthogonal Bandlet Bases for Geometric Images Approximation [ J ]. Communications on Pure and Applied Mathematics, 2008,61 (9) : 1173 - 1212.
  • 8Mohimani H, Babaie-Zadeh M, Jutten C. A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed l0 Norm[ J ]. IEEE Trans- actions on Signal Processing, 2009,57 ( 1 ) :289 - 301.
  • 9戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. 被引量:217
  • 10焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:318

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部