期刊文献+

基于复合Zernike矩相角估计的图像配准 被引量:6

Image registration based on complex Zernike moment phase angle estimation
在线阅读 下载PDF
导出
摘要 提出了一种基于复合Zernike矩相角估计的图像配准方法。首先,利用尺度不变检测子Harris-laplace检测图像中的兴趣点作为初始特征点,计算以兴趣点为中心、邻域具有尺度不变性的Zernike矩;提出一种鲁棒的相角估计方法,用于估计两个归一化区域的旋转角度值。然后,利用Zernike矩的幅值和相角信息,通过比较每个兴趣点邻域Zernike矩的相似度提取出初始匹配点。最后,提出一种迭代角度修正算法用于精确估计变换参数,并对输入图像进行几何变换后将两幅图像配准。实验结果表明,该算法可在尺度缩放、任意角度旋转以及噪声等复杂条件下实现图像的高精度配准。当旋转角度误差小于20°时,图像的平均覆盖率达到94.125%,有效降低了误匹配的概率。 An image registration method based on complex Zernike moment phase angle estimation was proposed.Firstly,the Harris-laplace operator was used to detect interest points in an image,and the interest points were regarded as initial feature points.The Zernike moments defined on the scale normalized interest point neighborhood were computed,and a new robust estimation method for phases was presented to compute the rotation angle between two normalized regions.Then,the magnitude and phase angle information of Zernike moments were combined and used to measure the Euclidean distance between two matching regions.Finally,an iterative refined angle method was proposed to estimate the parameters accurately,and the image registration was finished after the geometric transform of input images.The experimental results show that the proposed algorithm impletments a precise image registration under the scaling,arbitrary rotation and noise.The average coverage percentage achieves 94.125% when the rotation angle error is less than 20°,which reduces the false match rate effectively.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2012年第5期1117-1125,共9页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.60802077) 国家青年基金资助项目(No.61003196)
关键词 图像配准 兴趣点 尺度不变性 相位和幅值分量 ZERNIKE矩 image registration interest point scale invariance phase and magnitude component Zernike moment
  • 相关文献

参考文献16

  • 1ALI S, REILLY V, SHAH M, etal: Motion and appearance contexts for tracking and reacquiring targets in aerial videos[C]. IEEE CVPR, 2007: 16.
  • 2朱娟娟,郭宝龙.复杂场景中基于变块差分的运动目标检测[J].光学精密工程,2011,19(1):183-191. 被引量:19
  • 3BARBARA Z, JAN F. Image registration methods: a survey[J]. Image and Vision Computing, 2003, 21(11) : 977-1000.
  • 4龚卫国,张旋,李正浩.基于改进局部敏感散列算法的图像配准[J].光学精密工程,2011,19(6):1375-1383. 被引量:11
  • 5MATTHEW B, DAVID G L. Automatic panoramic image stitching using invariant features[J]. Inter- national Journal of Computer Vision, 2007, 74 (1) : 59- 73.
  • 6ZHI L S, ZHANG J P. Remote sensing image reg istration based on retrofitted SURF algorithm and trajectories generated from lissajous figures[J].Ge- oscience and Remote Sensing Letters, 2010, 7 (3) 491-495.
  • 7DAVID G L. Distinctive image features from scale invariant keypoints [J]. International Journal of Computer Vision, 2004,60(2) :91-110.
  • 8BAY H, ESS A, TUYTELAARS T, etal: Spee ded-up robust features (SURF)[J]. Computer Vi sion and Image Understanding, 2008, 110(3):346 359.
  • 9杨占龙,郭宝龙.基于兴趣点伪泽尼克矩的图像拼接[J].中国激光,2007,34(11):1548-1552. 被引量:15
  • 10JIGNESH S, SUPRAVA P, HEMANT G. Image registration using NSCT and invariant moment[J].International Journal of Image Processing, 2010, 4(2) :119-130.

二级参考文献41

共引文献59

同被引文献67

  • 1高富强,张帆.一种快速彩色图像匹配算法[J].计算机应用,2005,25(11):2604-2605. 被引量:15
  • 2郝明非,张建秋,胡波.一种超复数鲁棒相关图像配准算法[J].复旦学报(自然科学版),2007,46(1):91-95. 被引量:6
  • 3徐学强,汪渤,于家城,王闻博.一种新型不变矩在图像识别中的应用[J].光学技术,2007,33(4):580-583. 被引量:11
  • 4Lowe D G. Distinctive image features from scale-invar-iant dey points [J]. International Journal of ComputerVision,2004,60(2).:91-110.
  • 5Beis J S,Lowe G. Shape indexing using approximatenearest — neighbor search in high dimensional spaces[C]//Proceedings of IEEE Computer Society Confer-ence On Computer Vision and Pattern Recognition.Los Alamitos. IEEE Computer Society Press, 1997:1000—1006.
  • 6Szeliski R. Video mosaics for virtual environment [J].IEEE Computer Graphics and Application, 1996,16(2).:22-30.
  • 7MI L, QIAO Y, YANG J, et al. Robust matching of SIFT keypoints via adaptive distance ratio thresholding [ C]. Sixth International Conference on Machine Vision (ICMV 2013), London, United Kingdom, 2013.
  • 8ZHANG T, MEI Y. Automatic image registration algo- rithm based on improved Harris corner detection [ C ]. In International Conference on Graphic and Image Pro- cessing(ICGIP 2011 ), Cairo, Egypt, 2011.
  • 9YI Z, ZHANG X, MU X, et al. SAR image registration based on SIFT and MSA [ C ]. Conference of Photoelec- tronic Technology Committee of the Chinese Society of Astronautics : Optical Imaging, Remote Sensing, and Laser-Matter Interaction, Suzhou, China, 2013.
  • 10SILPA-ANAN C, HARTLEY R. Optimised KD-trees for fast image descriptor matching[ C ]. IEEE Conference on Computer Vision and Pattern Recognition, 2008:1-8.

引证文献6

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部